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Abstract In this paper, we demonstrate reliable navigation of a smart wheelchair
system (SWS) in an urban environment. Urban environments present unique chal-
lenges for service robots. They require localization accuracy at the sidewalk level,
but compromise GPS position estimates through significant multi-path effects. How-
ever, they are also rich in landmarks that can be leveraged by feature-based local-
ization approaches. To this end, our SWS employed a map-based approach. A map
of South Bethlehem was acquired using a server vehicle, synthesized a priori, and
made accessible to the SWS. The map embedded not only the locations of land-
marks, but also semantic data delineating 7 different landmark classes to facilitate
robust data association. Landmark segmentation and tracking by the SWS was then
accomplished using both 2D and 3D LIDAR systems. The resulting localization
algorithm has demonstrated decimeter level positioning accuracy in a global coor-
dinate frame. The localization package was integrated into a ROS framework with a
sample based planner and control loop running at 5 Hz. For validation, the SWS re-
peatedly navigated autonomously between Lehigh University’s Packard Laboratory
and the University bookstore, a distance of approximately 1.0 km roundtrip.

1 Introduction & Motivation

In 1997, Prof. Illah Nourbakhsh of Carnegie Mellon University established The
Wheelchair Project. Its goal was to develop an autonomous wheelchair capable
of reliable navigation in both indoor and outdoor environments [14]. As an ini-
tial milestone, Nourbakhsh proposed to demonstrate autonomous navigation from
Smith Hall to the University Center bookstore - a distance of approximately 500
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meters outdoors. While it does not appear that Nourbakhsh’s vision has been real-
ized yet, we draw inspiration from his work to pose a similar challenge to ourselves:
demonstrate reliable autonomous navigation of a smart wheelchair system (SWS)
from Lehigh’s Packard Laboratory to the University bookstore. Coincidentally, the
most direct wheelchair-accessible route for our task is also ≈ 500 meters. It also
required the wheelchair to navigate multiple street crossings, and to maintain a suf-
ficiently accurate localization estimate to enable reliable navigation at the sidewalk
scale.

To accomplish this objective, we were able to leverage technologies unavailable
to Nourbakhsh at the time he posed the challenge. Specifically, we employed a low-
cost 3D LIDAR system for both ground and obstacle detection, as well as feature
tracking. We also made extensive use of Willow Garage’s Robot Operating Sys-
tem [15]. From the development and testing that followed, we provide significant
insights into what worked and what did not. By integrating these lessons learned,
the SWS was capable of capable of completing our bookstore challenge without
incident. Lastly, we should emphasize that while developed in support of our SWS
project, these results have broad applicability to field and service robots operating
in urban environments.

2 Related Work

Smart wheelchair systems (SWS) have been an active research area since the early
1980s. The spectrum of work has ranged from component level safety sensors, to
assistive controllers for steering, to completely autonomous solutions. A survey of
the field (as of Aug 2005) can be found in [18]. More recent projects of note in-
clude the MIT Intelligent Wheelchair Project [10], the goal of which is to develop a
voice-commanded autonomous wheelchair intended for use in indoor environments.
The Home, Lift, Position, and Rehabilitation (HLPR) Chair [1] developed by NIST
is a special-purpose assistive mobility device to provide independent patient mo-
bility for indoor tasks, such as moving to and placing a person on a toilet or bed.
HLPR has demonstrated obstacle detection and navigation indoors with promising
results. The Personal Mobility and Manipulation Appliance (PerMMA) [2] is being
developed at the NSF Quality of Life Technology Center (QoLTC), with the ob-
jective of combining manipulation and mobility assistance in support of complete
independence for its users. The system employs two robotic arms, and has demon-
strated object manipulation tasks such as retrieving a drink from a refrigerator. Our
own work to date in the smart wheelchair space includes the Automated Transport
and Retrieval System (ATRS) [6]. ATRS improves automobility access for power
wheelchair users by eliminating the need for an attendant to stow and retrieve the
wheelchair.

In contrast to these efforts, the emphasis of our current work is navigation in un-
structured, outdoor environments. Developing robust robotics solutions suitable for
use outdoors is a significant challenge. Compared to indoor environments, the scale
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is much larger, illumination levels vary from strong sunlight to near complete dark-
ness, the environment is far less structured, environmental conditions can quickly
and dramatically change, and simplifying assumptions such as a level ground plane
cannot be used. Furthermore, operations at the sidewalk level require localization
performance beyond the bounds of what traditional GPS can provide. Other research
groups have studied the problem of localization in outdoor and urban environments.
These include Georgiev et al who used a mixture of cameras, GPS, laser scanners,
sonar, tilt sensors, and a database of facade models for localization [8]. They demon-
strated their approach by traveling a 330 meter course and localizing with an error
of approximately 1 meter. Ramos et al combined an EKF-SLAM approach with
landmark modeling [16]. Driving an automobile over a course of 1.5 km, they were
able to localize within an error of 8.6m.

In this work, we build upon our own previous results in large-scale map based
localization. First, our localization approach was improved and extended to enable
decimeter level accuracy. Second and more significantly, our SWS was able to em-
ploy the localization scheme for reliable autonomous navigation for the first time.
This was validated through significant experimental results – including over 10 km
of autonomous operations – culminating in the successful completion of our book-
store challenge.

3 Development Platform

3.1 Vehicle Platform

Fig. 1: The SWS vehicle integrates
both 2D and 3D LIDARs for exterocep-
tive sensing, high-resolution encoders,
and an inertial measurement unit.

The vehicle platform used for this work is
shown at Figure 1. From our experiences, three-
dimensional (3D) perception is a critical en-
abling technology for autonomous navigation
in unstructured environments. To this end, the
primary exteroceptive sensor on the SWS was
an IFM O3D200 3D flash LIDAR. New to the
robotics arena, the IFM can measure the range
to and surface reflectivity of objects in the en-
vironment. It is also relatively compact and low
cost (<$1,500 US) [11]. More importantly, the
IFM performs well in the range of illumination
levels encountered outdoors. The trade-offs for
this low price point are a relatively low res-
olution (48×64 pixels), narrow field of view
(30◦× 40◦) and limited effective range (≈ 6-8
meters in our application). Despite these limita-
tions, we could identify no sensor on the market
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that provided reliable 3D measurements outdoors at a comparable price point (note
the Microsoft Kinect is not suitable for operations in bright sunlight [12]). In our
application, the IFM established the ground-plane, detected obstacles, and tracked
landmark features in 3D at a rate of ≈ 5 Hz.

The SWS prototype also integrates a Hokuyo UTM-30LX 2D LIDAR. The
Hokuyo’s larger field of view (270◦), finer angular resolution (0.25◦), higher up-
date rate (40 Hz) and longer effective range (up to 20 meters) complemented the
limitations of the IFM. Like the IFM, the Hokuyo was mounted as an accessory for-
ward of the left wheelchair armrest and slightly pitched down. It was used for both
obstacle detection and tracking landmark features.

Motor control for the SWS was accomplished with an on-board embedded com-
puter. To regulate the vehicle’s linear and angular velocities, it employed a software-
based PID that controlled the individual wheel velocities using feedback from high
resolution quadrature encoders (4,096 CPR). A Microstrain 3DM-GX1 inertial mea-
surement unit mounted to the SWS frame provided gyro corrections for improved
odometry performance. All other processing was done by a laptop computer with a
1.6 GHz Intel 720QM processor.

3.2 Software Architecture

Fig. 2: Major functional blocks of the SWS software
architecture.

The system software architecture
was based upon the ROS paradigm
of interconnected nodes that com-
municate via messages [15]. Each
node subscribed to topics pub-
lished by other nodes, and pub-
lished its own messages as it pro-
cesses data. Nodes also listened
to a transform tree, which allowed
messages to transform to and from
any frame. When processing LIDAR data, we leveraged ROS’ Point Cloud Library
(PCL) which provided basic algorithms like RANSAC segmentation, pass-through
filtering, and nearest neighbor cluster extraction [20]. The block diagram in Figure 2
shows the basic structure of the system architecture. These are discussed in greater
detail in the following sections.

4 Generating the Global Map

A primary motivation for the map-based localization approach was that by lever-
aging such maps, robots with lower cost sensor suites gain some of the benefits
obtained from the higher fidelity sensors of the mapping platform, but without the
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cost. This necessitated an a priori map construction phase for both localizing land-
marks, as well as identifying wheelchair-accessible routes within the global map.
These two phases are described below.

4.1 The Landmark Map

To obtain the desired sub-meter localization accuracy in the absence of reliable GPS,
we relied upon a map-based localization approach. This necessitates the availability
of an accurate landmark map. To this end, we leveraged our previous results in
large-scale mapping [7]. In this paradigm, three dimensional map data were acquired
by manually driving an automobile (Figure 3) instrumented with a high precision
GPS/INS system, in conjunction with light detection and ranging (LIDAR) systems.
LIDAR range measurements were subsequently registered to a global (WGS 84)
coordinate frame. The resulting map data were then synthesized a priori to identify
robust, salient features for use as landmarks in localization.

Fig. 3: The mapping vehicle integrated an OXTS
RT-3050 for 6DoF vehicle pose estimation, and a
pair of roof mounted Sick LMS291-S14 LIDARs
(circled red) to capture relative range measure-
ments.

As in [7], the landmarks that were
used in this work were limited to
“pole-like” features (e.g., lamp posts,
trees, parking meters, street signs, etc.)
that are prevalent in urban landscapes.
Each landmark was characterized by
5 parameters: 1) x-y position (WGS
84), 2) positional uncertainty (covari-
ance) estimate, 3) radius estimate, 4)
radius estimate uncertainty, and 5) re-
flectivity. The radius was used to clas-
sify the landmarks into one of seven
classes, with examples shown at Fig-
ure 4. This classification was used to
protect against incorrect landmark data association, and is described in more detail
in Section 6.2.

We should also note that while the original landmark map of South Bethlehem
had been automatically synthesized as outlined in [7], it was augmented for this
work “by hand” with additional landmarks. This was necessitated due to the recent
razing and reconstruction of a one square block region along our route, and the un-
availability of the mapping vehicle during this time frame. The coordinates of larger
features (e.g., lamp posts, trees, etc.) were identified from satellite imagery, while
smaller features (e.g., parking meters and street signs) were mapped by the SWS
itself, and subsequently refined during a SLAM phase to improve local consistency.
After this refinement phase, their locations and positional covariances were consid-
ered fixed within the landmark map.
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Fig. 4: Instances of the 7 landmark classes. Landmarks were classified and tracked based upon
geometry and reflectivity. Detected landmarks could be reliably associated with their respective
classes which prevented data association errors in our experiments.

4.2 The Route Network

The SWS relies upon a route network that exists in the world frame, and serves as the
global map for wheelchair accessible paths. The route network was constructed by
manually driving the SWS along the desired navigation path while running the lo-
calization algorithm described in Section 5. Waypoints were then obtained by sam-
pling the SWS pose for every ≈ 4 meters traveled. In addition to WGS 84 position
information, waypoints were also augmented with semantic information to include
labels (e.g., “LU Bookstore”), speed limits, and stop points which the robot must
obey. Stop points were placed at areas such as cross walks which currently require
human supervision to safely traverse. In our current implementation, when the SWS
reaches a designated stop point it will pause until receiving a resume command from
the operator.

For global path planning, the route network was represented as a graph G(V,E).
Waypoints in the route network corresponded to vertices vi ∈ V of G, and the edge
set E⊂G corresponded to path segments where each ei j ∈ E connected a pair of
waypoints (vi,v j). Edges were weighted based upon the expected traversal time as
estimated using the edge length and associated waypoints’ speed limits. The optimal
path to a given destination was then specified via a waypoint sequence as determined
from Dijkstra’s algorithm.

5 Map-based Localization

Localization of the SWS was based upon a modified version of the FastSLAM 2.0
algorithm [13]. Although FastSLAM is a localization and mapping algorithm, for
this work no mapping was conducted during navigation, as the fixed landmark map
was provided a priori. The algorithm was also adapted to accommodate multiple
observations per control, as the control loop (5 Hz) and LIDARs (5 Hz and 40 Hz)
operated asynchronously and at different update rates. Each particle was of the form

Y [k]
t = 〈x[k]t ,〈µ [k]

1 ,Σ
[k]
1 ,s[k]1 〉, ...,〈µ

[k]
N ,Σ

[k]
N ,s[k]N 〉〉 (1)
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where x[k]t was the pose of the kth particle at time t. Each of the N landmarks was
parameterized by a mean position µ [k] and covariance estimate Σ [k] which remained
fixed. Furthermore, each landmark carried additional semantic data used for data
association and tracking. In our case, this was the radius of the landmark and reflec-
tivity (in the tracking case). For our tests we used a fixed set of 60 particles. While
fewer could be used when the robot was properly localized, we found a large set of
particles ( > 30) was important to properly initialze the robot.

For the prediction phase of the filter, we sampled from a probabilistic motion
model for a differential drive robot where the robot control inputs (v,ω) were cor-
rupted with additive Gaussian noise [19]. Four noise parameters were used, two to
indicate control noise for a traslational movement (a1 = .05 and a2 = .01), and two
to indicate control noise for a rotational movement (a3 = .001 and a4 = .1). We
determined the values for these parameters empirically. Further, we found that with
sparsity of landmarks a diverse particle set improves localization performance, thus
exaggerated noise in the motion model was preferred.

To perform data association with the landmarks, we used maximum likelihood
correspondence (MLC) [19]. Our MLC implementation compared each observation
to every landmark in the local (cost) map, and computed a weight for each associa-
tion. The weight was approximated by a Gaussian with mean (zt − ẑ j), where zt is
the observation at time t and ẑ j is the predicted observation of landmark j, and co-
variance Q j = H jΣ jHT

j +Qt , where H j is the 3x3 pose Jacobian taken with respect
to map features, Σ j is the covariance of the jth landmark, and Qt is the linearized ve-
hicle measurement noise. The observation and predicted observation are of the form
zt = [ρt ,φt ,st ]

T where ρ , φ , and s are respectively the range, bearing, and radius of
a feature. The final weight is then approximated by

w j = |2πQ j|−
1
2 exp{−1

2
(zt − ẑ j)

T Q−1
j (zt − ẑ j)} (2)

The landmark with the maximum weighted association w∗ was then used for local-
ization as long as it exceeded a minimum threshold.

To assess the performance of our localization module, we measured the real
world distance from 22 landmarks and compared this agains the localized robot
pose. The robot was manually driven through the course and at 22 points we mea-
sured the distance from the robot to nearest landmark. This same distance was calu-
lated through analyzing recorded data. We repeated this for three different scenar-
ios: perfect observation, observation of only 75% landmarks, and observation of
only 50% landmarks. This was done to simulate cases where landmarks may be oc-
cluded by dynamic obstacles (i.e., pedestrians). The results of this experiment are
summarized in Table 1. While far from exhaustive, these results indicate that while
localization accuracy does drop as landmarks are occluded, average 1D accuracy
remained sub-decimeter when even half the landmarks were not observed. More
significantly, the localization filter did not diverge.
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100% Landmarks 75% Landmarks 50% Landmarks
Average Error (cm) 5.15 5.97 7.18
Standard Dev (cm) 4.81 5.20 6.48
Maximum Error (cm) 15.71 18.28 23.20
Minimum Error (cm) 0.16 0.38 0.31

Table 1: Sub decimeter 1D localization accuracy is achieved even when half the landmarks are
removed from the map. In each scenario the localized robot pose did not diverge.

6 Perception

6.1 Ground/Obstacle Detection

Obstacles were detected by both the IFM and Hokuyo LIDARs. The IFM accounted
for close range (within 6m) and low lying obstacles. The first step to obstacle detec-
tion was reliable segmentation of the ground plane. This was accomplished using
RANSAC to robustly fit the IFM point cloud measurements [5]. Once an accurate
ground plane was established, all inlier points were removed from the raw scan. The
remaining scan was then filtered to remove outliers, resulting in a cloud of obstacle
points.

The Hokuyo was able to detect obstacles that were further away (up to 20m) and
above the ground plane. Obstacles detected by either the IFM or Hokuyo LIDARs
were broadcast for integration into the local map. This is discussed in more detail in
Section 7.1.

6.2 Landmark Feature Segmentation

Both the IFM and Hokuyo LIDARs were employed for landmark segmentation.
However, since 2D and 3D landmark representations are dramatically different, the
segmentation approaches also differ.

For the 2D case (Hokuyo LIDAR), each scan was first registered to the fixed
global frame to account for any wheelchair motion between scans. Each scan was
then decomposed into connected components with a maximum intra-cluster spacing
of 45 cm, and a minimum cluster size of 4 points. Then, a 2D circle was fitted to
each connected component using RANSAC [5]. Circles with a fitted radius greater
than 40 cm were discarded from consideration, as these features were larger than
any in our landmark map. Finally, any cluster that did not fit the circle model well
(less than 90% inliers) was discarded. The remaining components were then tracked
as potential landmarks. We analyzed each connected component to determine its
location in the global frame, its range and bearing to the robot, the dimensions of
its bounding box, its radius, its reflectivity, and the number of observations of that
feature.



To the Bookstore! Autonomous Wheelchair Navigation in an Urban Environment 9

To discriminate between static features (e.g., landmarks, stationary pedestrians,
etc.) and dynamic features (e.g., walking pedestrians, moving cars), each new fea-
ture was compared against a list of features detected in previous scans. New features
that were within the 45 cm intra-cluster threshold and with intrinsic parameters
(bounding box, radius, and reflectivity) within 10% of a previously detected fea-
ture will increment the observation count of that previous feature, as well as update
all intrinsic parameters. The range and bearing to a feature was only published as
an observation for the localization engine when that feature was observed at least
twice.

Fig. 5: Scan fidelity was improved by creating composite images from multiple scans. A sin-
gle scan of a pole (left) shows three distinct clusters. Only the bottom will be tracked. The pole
in the combined scan (right) is contiguous, and will be tracked more reliably due to its higher
height/width ratio.

The 3D case was similar, except given the extra dimension we could infer more
about the intrinsic parameters of objects. Since the LIDAR scans were sparse, we
concatenated the last 5 scans (again registered to the global frame) to create a richer
point cloud for feature extraction as shown in Figure 5. We ran this input cloud
through a series of filters to remove noise. The ground plane was then removed, and
the remaining cloud was further processed to segment features. As in the 2D case,
the point cloud was broken into connected components of nearest neighbor clusters
with a maximum intra-cluster spacing of 7 cm. A cylindrical model was then fitted
to each connected component, again using RANSAC, which allowed us to estimate
the component’s position, orientation, and radius. We necessitated that any feature
have a height/width ratio of at least 2, and the lowest point of the feature should be
at most 5 cm from the ground plane. Again, the range and bearing to a feature was
only published as an observation when that feature was observed at least twice.

7 Planning & Control

7.1 Generating the Cost Map

As the wheelchair traversed its environment, it maintained a local cost map repre-
sented as a 2D occupancy grid [4]. The cost map was 20 m × 20 m in size centered
on the robot base, and followed the vehicle in a rolling window fashion. Cell resolu-
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tion was 5 cm. Each cell was assigned a cost based on three factors: distance to path
(Cp), distance to goal (Cg), and occlusion cost (Co). Cells containing the global path
were marked with zero path cost. For all other cells, Cp was proportional to the Eu-
clidean distance from each cell to the closest path cell. A similar process was used
to calculate the Cg. Note however that the goal was not the final goal destination, but
the last global path point within the dimensions of the rolling window. Any cell that
contained an obstacle (as determined by the IFM or Hokuyo) was marked as occu-
pied and given maximum Co which would prohibit traversal. The cost of these cells
was inflated to a radius of 80cm, or the circumsribed radius of the SWS footprint, as
described in [3]. Occupied cells were only cleared when a ray from the laser can be
traced through the occupied cell. The cost map served as input to the local planner
for trajectory optimization. A sample costmap is shown in Figure 6.

7.2 The Local Planner

Fig. 6: Navigation visualization. The blue square
is the robot, the green line is the desired path, the
yellow line is the lowest cost trajectory. The bright
red cells are obstacles of maximum cost. Obstacle
cells are inflated with a high cost region in blue.

The SWS employed trajectory roll-
out for local planning [9]. This is a
sample based approach on the input
space of the linear and angular con-
trol velocities (v,ω). A sample tra-
jectory T = {x0,v1,ω1, ...,vk,ωk} was
specified by the current robot pose x0
and a sequence of k velocity inputs
where k denotes the number of time-
steps in the control horizon. The ve-
locities were then integrated forward
in time yielding a projected path over
the chosen time horizon. An advantage
of sampling the control velocities is
that we ensure each trajectory is fea-
sible in terms of the wheelchair kine-
matics. For our implementation, the
discretization of v and ω was .06 m/s
and .05 rad/s, respectively, and the control horizon k = 10 time steps. Each tra-
jectory Ti was then evaluated against the cost map M described in Section 7.1
using the cost function C(Ti,M) = koCo + kpCp + kgCg. The optimal trajectory
T ∗ = argmin C(T,M) was then selected, and the associated velocity command
(v∗1,ω

∗
1 ) ∈ T ∗ was issued to the wheelchair controller.

One further refinement was made to model actuator latency. The local planner
maintained a queue of the two most recent velocity inputs to the motor controller.
These were then used in a feed-forward fashion to deterministically move the SWS
prior to generating trajectories for evaluation.
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8 Experimental Results

Fig. 7: Satellite view of the route from Packard Laboratory to the Lehigh bookstore. Stop points
are shown as red octagons, and landmarks as red “x” marks. The round-trip distance is 980 meters.
The four numbered points correspond to locations of interest, as highlighted in Figure 8

Fig. 8: Close-ups of points of interest along the route from Packard Laboratory to the LU Book-
store. These include (1) a crosswalk on Packard Ave., (2) street crossing at Asa Packer Drive with
curb cutouts, (3) narrow sidewalk Morton St. with significant obstacles, and (4) the route destina-
tion.

Figure 7 provides a satellite view of our bookstore challenge. The green line seg-
ments denote the route from Packard Laboratory (right side) to the bookstore. Note
that a more direct route was not used, as stairs made it inaccessible for wheelchair
users. Red “octagons” denote stop points and are located at the two street crossings
as well as the entrance to a parking garage. As noted previously, when the SWS
reaches a stop point, it will pause until manually resumed by the operator (i.e., the
user touches the space bar). In a clean run, these and specifying the goal location
would be the only inputs provided by the user. The red “x” marks denote the lo-
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cations of landmarks along the route. A maximum of 92 could be observed by the
SWS along the route.

The numbered locations in Figure 7 correspond to the sub-figures in Figure 8
to provide a close-ups of points of interest. These include: 1) the cross-walk on
Packard Avenue, 2) the street crossing on Asa Packer Drive, 2) he sidewalk on Mor-
ton Avenue, which is only wide enough for single direction traffic, and 4) the Lehigh
University (LU) bookstore. A successful trip would bring the SWS immediately in
front of the bookstore doors.

Over the course of a one month test period, a total of 11 round-trip missions
to/from the bookstore were conducted, for a total distance over 10 km. The nominal
SWS speeds were 0.9 m/s (3.1 km/hr) for runs 1-4, 1.0 m/s (3.5 km/hr) for runs 5-8,
and 1.2 m/s (4.3 km/hr) for runs 9-11. Of the 11 trips, 3 required user intervention.

The first intervention occurred during the low speed trials, and was attributed
to excessive inflation of obstacles in the cost map. This lead the SWS to believe
incorrectly that the sidewalk path was blocked. In this case, the SWS attempted to
circumvent the perceived obstacle by traveling along the grass to the right. Although
this behavior would have been safe, it was obviously incorrect and the run was
aborted. A subsequent adjustment to the cost map parameters was made, and this
failure mode was not seen subsequently. Success in subsequent trials lead us to
increase the SWS speed to 1.0 m/s, and it was this higher speed that exhibited the
second failure mode.

At 1.0 m/s, two of the first three trials ended with operator interventions as a
result of the SWS leaving the sidewalk path. In one case, a drive wheel migrated
onto the grass shoulder and the second time into a mulch bed. Upon review of the
log files, we determined that although the SWS perception and planning subsystems
were operating properly and sending correct velocity inputs to the motor controller,
these were not being actuated in a timely fashion. The cause of failure was identified
as the motor controller. The motor controller PID gains had originally been tuned
to minimize the steady-state error in the wheel velocities. However, this came at the
expense of rise time. As a result, the PID could not achieve the velocity setpoints in a
single 200 ms I/O cycle and short duration velocity inputs were lost. This deficiency
had been masked by the overall system latency, and as a result the local planner
could not compensate for the lost actuator inputs. This shortcoming was corrected
by re-tuning the motor controller PID using a minimum rise time criterion which
was more suitable for real-time control. This allowed setpoints to be approached in
a single 200 ms control cycle. An additional benefit from this change was a reduction
in the overall actuation latency from approximately 600 ms to 370 ms as estimated
by cross-correlating the velocity I/O response.

After these modifications, an additional trial with the SWS was conducted at
the 1.0 m/s velocity. Wheelchair response was noticeably improved, and the trial
was completed successfully. As a result of this success, the velocity was further
increased to 1.2 m/s, and three trials were completed at this speed without incident.
This corresponded to a total distance of over 3.8 km with the new PID tuning, and
the SWS behaved predictably at all times. A video of one of these trials can be
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viewed at http://youtu.be/FUgHMReg4xM. Screenshots from this run for the same
areas of interest discussed above are at Figure 9.

Fig. 9: Screen captures of a navigation run. Video capture is on the left, visualization of data is on
the right.

9 Conclusions

In this work, we successfully completed our bookstore challenge to demonstrate
autonomous navigation of a smart wheelchair system in an urban environment. This
was realized by combining 2D and 3D LIDAR sensor systems with a global map to
obtain decimeter level localization accuracy. Open-source software (ROS/PCL) was
also leveraged to facilitate platform development.

While we are satisfied with our progress to date, significant work in many aspects
of autonomous navigation remains before real-world systems will be available. In
the immediate future, we intend to investigate higher speed limits for the SWS, and
to grow the global map to investigate longer distance/duration operations. We have
no doubt that additional failure modes will manifest as we expand the wheelchair’s
operational envelope.

A primary future emphasis will be navigation in crowds. This will require SWS
localization to be robust to occlusion for intermittent periods of time, and likely
require the introduction of additional landmark classes into the global map. It will
also necessitate reliable people detection and tracking so that appropriate interaction
models can be made. We have obtained preliminary results in this area [17], but
effectiveness has been hindered by the constrained field-of-view (30◦×40◦) of the
IFM. In truth, a significantly wider field-of-view would be greatly beneficial for all
aspects of SWS navigation. Still, we will continue to make progress, which will
inevitably be aided by the future maturation of sensor technologies.
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