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Abstract— In this paper, we consider the task of reposition-
ing a formation of robots to a new shape while minimizing
either the maximum distance that any robot travels, or the
total distance traveled by the formation. We show that optimal
solutions in SE(2) can be achieved for either metric through
second-order cone programming (SOCP) techniques. For the
case where the orientation of the new formation shape is
fixed, we obtain optimal solutions in both R

2 and R
3. The

latter also allows for complete regulation of the formation
size via constraints on the shape scale. We expect that these
results will prove useful for extending the mission lives of
robot formations and mobile ad-hoc networks (MANETs).

Index Terms— Shape change, convex optimization, SOCP

I. I NTRODUCTION

Over the last several years, there has been a great deal of
interest in developingmobile ad-hoc networks(MANETs)
for applications such as environmental monitoring, health
care, and homeland security to mention just a few. One
of the major driving factors behind this interest is the
new robotic applications originating from both the military
and the civilian domains. In these roles, tasks may be
extremely difficult for a single robot to accomplish. Thus,
a system composed of teams of cooperative robots is
desirable because of its flexibility, robustness and fault
tolerance.

The research challenges encountered in multi-robot and
sensor networks require the integration of different disci-
plines including biology, optimization, and control. There-
fore, it is not surprising that the related literature enjoys
the flavor of a broad spectrum of approaches which have
been utilized for coordinating robot/sensor teams. Specif-
ically, we are interested in developing optimization based
positioning strategies for formation shape changes in robot
teams. Changes in formation shape may be necessitated by
new mission objectives, to compensate for node failures,
or to accommodate for changes in the environment (e.g.,
for obstacle avoidance). By formationshape, we are re-
ferring to the geometrical information that remains when
location, scale, and rotational effects are removed. Thus,
formation shape is invariant under the Euclidean similarity
transformations of translation, rotation and scaling.
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The remainder of this paper is organized as follows. In
section II, we review relevant work on formation control of
robot teams and optimization approaches. Definitions and
the problem formulation are given in section III. Sections
IV and V give optimal solutions for the formation shape
problem inSE(2) and inR

3 through SOCP, respectively.
Additionally, these sections present simulation results that
verify the validity of the proposed optimization strategies.
Section VII reviews how motion constraints could be
accommodated. The complexity of the proposed framework
is discussed in section VIII. Finally, concluding remarks
and future work are given in section IX.

II. RELATED WORK

Formations of robot teams have been extensively studied
in the literature, and a complete survey is outside of the
scope of this paper. Instead we focus on those where
shape- defined differently under different contexts - was
of significant relevance to the research.

Das et al described a vision-based formation control
framework [1]. This focused on achieving and maintaining
a given formation shape using a leader-follower framework.
Control of formations using Jacobi shape coordinates was
addressed by Zhanget al [2]. The approach was applied
to a formation of a small number of robots which are
modeled as point masses. Abstraction based control was
used by Belta and Kumar as a mechanism to coordinate
a large number of fully actuated mobile robots moving in
formation [3]. The main idea was to map the configuration
space of the robotsQ to a lower dimensional manifoldA.
The concept ofshaperefers to the area spanned by the
robots. A local controller was designed based on the state
of the robot and the state on the manifoldA.

Related studies includeconflict resolution of multi-
vehicle systems. In conflict resolution, trajectories are
planned for vehicles operating independently in the same
space but with potentially conflicting goals. The work of
Ogren and Leonard used a dynamic window approach
to avoid obstacles, and included the stability analysis
[4]. These approaches often adopt simplified models for
vehicle behavior, but present interesting applications for
optimization-based methods.

In cooperative control problems, vehicles move in a
coordinated fashion to achieve some common goal and/or



seek to maintain some geometrical relationships among
themselves. Often movement is dictated by measurement
of gradients of some actual sensor measurements, or some
artificial potential field. Solutions defined with inter-robot
distance relationships were explored by Bachmayer and
Leonard in [5], where methods to measure and project
gradient information were discussed. The applications for
these methods are in, for example, data acquisition in
large areas such as oceans where the most advantageous
arrangement of sensors may not be to distribute them
evenly, but to have them adapt to concentrate more sensors
in areas where the measured variable has steeper gradients.

There has also been significant interest in applying
optimization based techniques to coordinate robot teams
and deploy sensor networks. Contributions in this area
include the work by Corteset al [6]. Here the focus is on
autonomous vehicles performing distributed sensing tasks.
Recently Feddemaet al.applied decentralized optimization
based control to solve a variety of multi-robot problems
[7]. Optimal motion planning was considered by Belta
and Kumar [8]. In this work, authors generate a family
of optimal smooth trajectories for a set of fully actuated
mobile robots. The case for which robots have independent
goals but share the same space has been studied by LaValle
and Hutchinson in [9].

First, we should emphasize that while the primary focus
of these efforts has been control, our results are more
appropriate for use in a higher level planning phase. Given
an initial formation configuration and a desired shape,
we generate objective positions for each robot that will
achieve the desired shape while minimizing the distances
that the nodes must travel. These objective positions can
then be fed to appropriate controllers to drive the nodes
to their desired destinations. What further differentiates
our work is that (with the exception of perhaps [8] which
focused upon minimizing kinetic energy) the control poli-
cies for changing shape did not optimize over the distance
traveled by each node. Lastly, our framework leverages
recent advances in convex optimization and interior point
methods (IPM) to solve the subsequent problems for large
formations (> 1000 nodes) very quickly (e.g.≈ 1 second)
on current PC technology.

In this sense, our problem can be viewed as the converse
to the assignment problem [10] where the final pose of the
formation is knowna priori, and the objective is to find
an optimal assignment of nodes to objective positions. In
contrast, we determine the optimal pose corresponding to
the objective formation shape where assignments remain
fixed across shape transitions.

III. PROBLEM FORMULATION

The objective of this paper is to provide positioning
strategies for robot teams to efficiently transition to a new
formationshape, defined as follows:

Definition 3.1: The shape of a formation is the geomet-
rical information that remains when location, scale, and
rotational effects are removed.

Thus, formation shape is invariant under the Euclidean sim-
ilarity transformations of translation, rotation and scaling
[11].

Now consider a formation ofk ≥ 2 robots in a Euclidean
SpaceR

m, m ∈ {2, 3}. Let si ∈ R
m denote the position

of the ith robot relative to some local frameF . Without
loss of generality, lets1 correspond to the originO. We
denote the formation by thek × m matrix

S = [s1, . . . , sk]
T (1)

which is the concatenated coordinates of ourk robots inF .
We can then define the shape ofS as the equivalence class
of the full set of similarity transformations of the formation

[S] = {αSR + 1kdT : α ∈ R+, R ∈ SO(m), d ∈ R
m}

(2)
whereα ∈ R+ is the scale,R ∈ SO(m) is a rotation matrix
and d ∈ R

m is the translation vector.S then corresponds
to an icon of the shape[S].

Now let thek×m matrix P = [p1, . . . , pk]
T denote the

concatenated coordinates of the current formation pose in
some world frameW . Our objective is to obtain a new
formation poseQ = [q1, . . . , qk]

T in W whereQ has the
same shape asS under the equivalence relation defined
in (2), and where either the maximum distance between
the respective positions inP and Q are minimized, or
where the sum of the distances is minimized. We can now
formulate our problem:

Problem 3.2:Given an initial formation poseP in W
and a formation shape iconS in F , P 6∼ S, obtain a new
formation poseQ in W , Q ∼ S, and where:

1) max ‖ qi − pi ‖ is minimized fori = 1, . . . , k OR

2)
k∑

i=1

‖ qi − pi ‖ is minimized

IV. OPTIMAL SOLUTIONS IN SE(2) THROUGH

SECOND-ORDER CONE PROGRAMMING (SOCP)

We first consider the case for operations limited to
SE(2) (on the plane). We can then represent the shape
of our iconS as

[S] = {αSR + 1kdT : α ∈ R+, R ∈ SO(2), d ∈ R
2} (3)

Let si = (sx
i , sy

i ) and qi = (qx
i , qy

i ) denote Cartesian
coordinates inF and W , respectively. Equation 3 then
represents a set of equality constraints of the form

qx
i − qx

1 = α (sx
i cos θ − sy

i sin θ) (4)

qy
i − qy

1
= α (sx

i sin θ + sy
i cos θ) (5)

for i = 2, . . . , k and whereθ corresponds to the orientation
of the formation. Without loss of generality, we can define
the formation orientation as

θ = arctan
qy
2 − qy

1

qx
2 − qx

1

(6)

from which we obtain

cos θ =
qx
2 − qx

1

‖ q2 − q1 ‖ (7)



Fig. 1. The initial formation pose for a set of 55 nodes inR
2 (left). The final formation trajectory/pose that achieves the desired shape while minimizing

the maximum distance that any node must travel (center, right). The optimal values were0.93 for scale,−4.6 degrees for orientation and(0.41, 1.10)
for translation.

sin θ =
qy
2
− qy

1

‖ q2 − q1 ‖ (8)

Noting that forα ≥ 0 ands1

△
= O,

α =
‖ q2 − q1 ‖

‖ s2 ‖ (9)

we can rewrite the constraints in (4)-(5) as

qx
i − qx

1 =
sx

i

‖ s2 ‖ (qx
2 − qx

1 ) − sy
i

‖ s2 ‖ (qy
2 − qy

1 ) (10)

qy
i − qy

1 =
sx

i

‖ s2 ‖ (qy
2 − qy

1 ) +
sy

i

‖ s2 ‖ (qx
2 − qx

1 ) (11)

for i = 3, . . . , k.
These2(k − 2) constraints are now convex (in fact,

linear) functions of our state vectorq = (q1, . . . , qk)
T .

They are alsonecessary and sufficientfor describing the
formation shape [12]. The four free variables correspond
to the translation, rotation, and scale as defined in (3).

The problem of finding the formation poseQ can now
be posed as the constrained optimization problems

min
q

max
i=1,...,k

‖ qi − pi ‖2

such that Aq = 0
(12)

for our minimaxdistance metric defined in Problem 3.2.1,
and for our total distance metric, we have

min
q

k∑

i=1

‖ qi − pi ‖2

such that Aq = 0

(13)

where Aq = 0 denotes the set of constraints defined in
(10)-(11).

While both the constraints and objective functions of
these problems are convex, the form of the latter does not
lend itself to traditional optimization techniques. To remedy
this, we augment the state vectorq with an auxiliary
variablet1 for our minimax metric, and withk auxiliary
variablest = (t1, . . . , tk)T for our total distance metric.
The optimization problems in (12)-(13) can then be restated
as

min
q,t1

t1

such that ‖ qi − pi ‖2≤ t1, i = 1, . . . , k
Aq = 0

(14)

and for our total distance metric

min
q,t

k∑

i=1

ti

such that ‖ qi − pi ‖2≤ ti, i = 1, . . . , k
Aq = 0

(15)

Both forms are equivalent. However, the objective func-
tions in (14)-(15) are now twice differentiable. We have
also introducedk additional second-order cone constraints
which are still convex. The problem is now in the form of
a second-order cone program (SOCP), which has a unique,
globally optimal solution. It can be solved very efficiently
using modern interior point algorithms [13].

Simulation Results:Fig. 1 shows a simulation trial
demonstrating the process. In this example, 55 nodes were
tasked with transitioning to a new shape while minimizing
the maximum distance that any node must travel. While
deliberately contrived, this example demonstrates the effi-
cacy of our approach. The formation is able to optimally
transition from an arbitrary shape to a very specific shape.
This would typically be the case when a formation of
robots was initially deployed. In this example, none of the
shape parameters (i.e., translation, rotation or scale) was
regulated.

V. OPTIMAL SOLUTIONS IN R
2/R

3

We now consider the specific case where the orientation
of the shape is fixed. That is

[S]PS = {αS + 1kdT : α ∈ R+, d ∈ R
m} (16)

which is defined as thepre-shapeof S. The constraints
now implied by this new equivalence class are of the form

qi − q1 = αsi, i = 2, . . . , k (17)

which are linear in terms of our objective position and
scale.

This allows us to freely regulate the formation scale. We
assume then thatαmin ≤ α ≤ αmax, αmin ∈ R+. For the
case of a fixed scale, we need only setαmin = αmax. The
problem of finding the formation poseQ can now be posed



Fig. 2. The initial dispersion of a set of 192 nodes in a MANET (left). The final formation trajectories and shape that achieve the desired{3, 6}
tessellation while minimizing the combined distance that all nodes must travel (center, right). In this example, both the desired orientation (θ = 0) and
scale (α = 1) are fixed.

as the constrained optimization problems

min
q,α,t1

t1

such that ‖ qi − pi ‖2≤ t1, i = 1, . . . , k
qi − q1 = αsi, i = 2, . . . , k
−α ≤ −αmin

α ≤ αmax

(18)

and for our total distance metric

min
q,α,t

k∑

i=1

ti

such that ‖ qi − pi ‖2≤ ti, i = 1, . . . , k
qi − q1 = αsi, i = 2, . . . , k
−α ≤ −αmin

α ≤ αmax

(19)

This problem is again a SOCP. We should emphasize that
unlike in Section IV, no assumptions were made in this
formulation with regards to the degree ofm. As such,
it provides optimal solutions in bothR2 and R

3. Also
note that although we are optimizing over the state vector
x = (q1, . . . , qk, α)T , the m(k − 1) constraintsqi − q1 =
αsi, i = 2, . . . , k are sufficient to ensure the rigidity of the
formation. As such, we are in fact optimizing over onlyq1

andα, which correspond to the translation and scale terms
of (16).

Simulation Results:Fig. 2 shows a simulation trial
demonstrating the efficacy of the approach. In this example,
a mobile ad-hoc network (MANET) of 192 nodes is
initially dispersed on the plane. The desired shape is a
{3, 6} tessellation where both the scale and orientation are
fixed. The objective is to minimize the combined distance
that the nodes must travel to reach the desired shape. The
motivation for this would be to allow some portion of
the network to remain active for as long as possible. The
resulting trajectories and final formation shape are also
shown.

VI. ON REGULATING SCALE

From our definition of shape, the scaleα is constrained
to the interval(0, +∞]. This can potentially result in a
formation size that is too large - possibly violating sensing
or communication constraints. Alternately, for objective

shapes that are dramatically different from the current for-
mation configuration (e.g., a reflection) the optimal shape
may be forα → 0. As a consequence, in practice it may
be appropriate to define a scale rangeαmin ≤ α ≤ αmax,
αmin ∈ R+, or even to fix the scale so that a more
constrained formation shape can be achieved.

For fixed orientation, the constraints are linear inα
(Equation 17), and as a consequence regulating scale is
accomplished by boundingα as discussed in Section V.
However, for the more general case discussed in Section
IV the problem is far less trivial.

Consider regulating the scale for a shape overSE(2).
Establishing an upper boundαmax for the scale is straight-
forward. From our definition above we have

‖ q2 − q1 ‖≤ αmax ‖ s2 ‖ (20)

This is also a second-order cone constraint. However,
adding a minimum bound or equality constraint onα
renders the problem significantly more difficult as the
constraints

‖ q2 − q1 ‖ ≥ αmin ‖ s2 ‖
‖ q2 − q1 ‖ = α ‖ s2 ‖ (21)

are not convex. For these cases, randomization and lin-
earization/convex restriction techniques can be applied to
find approximate solutions [14]. However, randomization
schemes are inappropriate in the presence of equality
constraints. Additionally, the complete lack of convexityin
our lower bound constraint will leave relaxation solutions
highly dependent upon the shape orientation of the initial
feasible pointQ0 provided. Instead, we propose our own
approximation scheme.

Since orientation inSE(2) is constrained to the in-
terval [0, 2π), the ability to obtain an optimal solution
for fixed orientations inR

2 also provides a mechanism
for approximating optimal solutions inSE(2). We can
accomplish this by constructing a family of shape icons
S = {S1, . . . , Sz} corresponding to a discretization of
orientationsθ = {θ1, . . . , θz} such that

Si = S1R(θi − θ1), i = 1, . . . , z (22)

whereR(θi − θ1) denotes the rotation matrix relating the
shape iconSi to S1.



By modeling eachθi as a constant, we can approximate
the optimal solution by solving thesez SOCP in accordance
with the procedure in Section V above. The resulting shape
Qj , j ∈ 1, . . . , z corresponding to the shape iconSj with
minimum objective will be our solution. The exactness of
such an approach will only depend upon the resolution for
the discretization ofθ, as the solution for eachθi will be
optimal.

Simulation Results:A series of simulation trials was
conducted in an attempt to empirically characterize the
performance of this approximation approach. Three dif-
ferent objective shapesSi, i ∈ 1, . . . , 3 were chosen
corresponding to the three regular tessellations on the plane
{3, 6}, {4, 4} and {6, 3}, respectively [15]. For each trial
j, the initial shapePj was obtained by perturbing the
position of each node in the objective shapeSi with a
displacement randomly sampled from a two-dimensional
Gaussian distribution.

For a performance baseline, the optimal formation pose
was first obtained in accordance with Section IV. Our
approximation scheme then attacked the same problem by
solving the set of SOCPs for the family of shape icons
obtained from discretizingθ in accordance with (22). To
be consistent,α was unconstrained in both cases.

A total of 100 trials with 12 nodes was conducted for
eachSi. A statistical summary of the results for orientation
discretizations of1◦, 5◦, 10◦ and20◦ is provided at Table
I. Note that the values are normalized against the optimal
distances obtained from our baseline simulations. Thus, an
entry of 1.1 denotes that theminimax distance achieved
from the approximation scheme was 10% greater than the
optimal distance.

TABLE I

NORMALIZED DISTANCES FORminimaxAPPROXIMATION

Objective dθ Mean Median Max.
Shape (degrees) Distance Distance Distance

{3, 6} 1 1.001 1.002 1.005
{3, 6} 5 1.007 1.003 1.040
{3, 6} 10 1.016 1.012 1.076
{3, 6} 20 1.046 1.030 1.318
{4, 4} 1 1.001 1.000 1.006
{4, 4} 5 1.001 1.004 1.040
{4, 4} 10 1.015 1.010 1.066
{4, 4} 20 1.044 1.020 1.281
{6, 3} 1 1.001 1.000 1.005
{6, 3} 5 1.009 1.005 1.044
{6, 3} 10 1.023 1.012 1.136
{6, 3} 20 1.053 1.032 1.298

As expected, performance is strongly tied to the resolu-
tion of θ. For an orientation discretization of1◦, results of
all trials were within 1% of the optimal solution in each
category. While mean and median performance for higher
resolutions remains quite good for discretizations up to20◦,
the errors can still be significant at discretizations as low5◦.
While performing a large number of iterations is far from
ideal, this approach may prove useful for the case where
lower bounds on the formation scale must be explicitly
constrained.

VII. O N INTEGRATING MOTION CONSTRAINTS

This framework relies upon the convexity of the underly-
ing problem to generate optimal shape transitions for large
formations (e.g. > 1000 nodes) very quickly (e.g. ≈ 1
second) using current PC technology. As a consequence,
motion constraints can also be accommodated so long as
they can be expressed similarly. As an example, if the
motion of agenti was constrained to a maximum distance
dmax, this can also be expressed as a second-order cone
constraint of the form

‖ qi − pi ‖≤ dmax (23)

This would allow less mobile (or fixed) nodes to be
accommodated. Others might be expressed in terms of
linear constraints. As an example, a formation wanting to
maintain positive velocity in thex-direction could ensure
this by specifying a minimum forward distance traveled
dmin for each node as

qx
i − px

i ≥ dmin, i ∈ 1, . . . , k (24)

In summary, if the motion constraints can be expressed
in terms of some combination offeasible linear, second-
order cone, or semidefinite constraints, they can be directly
integrated within our framework.

Fig. 3. Shape transitions for a team of 15 robots with no motion constraints
(top row) and withq

y
i
− p

y
i

≥ 0, i ∈ 1, . . . , k (bottom row). In both
instances, the objective was to migrate from the initial inline shape (black
circles) to a triangular shaped formation (red stars). As expected, the
additional constraints for the latter increased the minimax distance for
the formation (by 87% in this case).

Simulation Results:A sample simulation trial showing
formation shape changes without (top row) and with (bot-
tom row) motion constraints is shown at Fig. 3. In both
cases, the objective was for the team of 15 robots to
transition from an initial inline shape to a triangular shaped
formation. Optimization was over our minimax metric. For
the latter case, the minimum forward distance traveled
for each node was constrained asqy

i − py
i ≥ 0, i ∈

1, . . . , k. Scale and orientation were fixed in both cases.
As expected, the objective shape was reached in both
instances. However, the additional constraints for the latter
case increased the minimax distance for the formation (by
87% in this example).



VIII. O N COMPLEXITY

The complexity of the framework corresponds to that
of the underlying optimization problem in which it was
posed. The SOCP formulation requiresO(

√
k) iterations

to reduce the duality gap to some constant fraction of
itself. For general problems, the amount of work for each
iteration isO(k3), for a total complexity ofO(k3.5) [13].
However, our problem is very structured. The format of
the constraints representing both shape and distance is
invariant to formation size. Furthermore, the constraints
are inherently sparse, with each involving onlyO(m)
variables regardless of the size ofk. Exploiting both of
these characteristics can result in a significantly reduced
per-iteration complexity, withO(k2) being a more likely
bound. Empirical results in [16] imply that problems of
> 1000 nodes can be solved in≈ 1 second with current
PC technology and efficient software implementations.

Furthermore, these algorithms lend themselves to dis-
tributed computation. Results from parallel implementa-
tions indicate a near linear speedup is possible [17]. This
of course comes at the expense of communication require-
ments, but would permit our approach to be implemented
on embedded class processors for reasonably large forma-
tions.

IX. D ISCUSSION ANDCONCLUSIONS

In this paper, we have devised a framework for repo-
sitioning a formation of robots to a new shape while
minimizing either the maximum distance that any robot
travels, or the total distance traveled by the formation.
Optimal solutions inSE(2) and R

3 for fixed orientation
were achieved for both metrics through second-order cone
programming (SOCP) techniques. Recent advances in in-
terior point methods for solving such problems can allow
optimal positions for formations of> 1000 robots to be
solved very efficiently (in≈ 1 second). We feel that these
results will be useful in formation control and mobile ad-
hoc network deployments.

Despite these results, there are significant opportunities
for future work. While we achieve optimal solutions in
SE(2), we are only able to regulate an upper bound
on the formation scaleα. In many applications, a lower
bound or fixed value forα may be desirable while still
optimizing over shape orientation. We are investigating
alternate definitions of scale in an attempt to achieve
such a capability. We shall also evaluate convex relaxation
techniques and contrast these results to our current approx-
imation algorithm.

An optimal solution inSE(3) would also appear to be a
next logical step. However, the ability to extend our results
from SE(2) is not immediately obvious. We will take a
more formal look at this problem in the near future.

We shall also look at extending our definition of shape
to include assignment. The optimal solution to [10] can
be achieved through a linear programming formulation.
Thus, both problems can be posed as convex optimization

problems. We are currently looking at the potential for
merging these into a single convex formulation.

While our results generate optimal positions, the subject
of robot control has been heretofore ignored. We are
currently investigating extending these results by regulat-
ing velocity profiles via motion constraints in order to
ensure collision free trajectories. We will also investigate
integrating our current results into more traditional control
approaches.

Finally as an extension, the emergent field of nanoassem-
bly (i.e., the programming and coordination of large num-
ber of nanorobots [18]) may benefit from the results
presented herein.
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