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Abstract— In this paper, we consider the task of reposition- The remainder of this paper is organized as follows. In

ing a formation of robots to a new shape while minimizing  section Il, we review relevant work on formation control of
either the maximum distance that any robot travels, or the 1,4t teams and optimization approaches. Definitions and

total distance traveled by the formation. We show that optinal th bl f lati . . tion Ill. Secti
solutions in SE(2) can be achieved for either metric through e problem Tormulaton are given In section lil. sectons

second-order cone programming (SOCP) techniques. For the 1V and V give optimal solutions for the formation shape
case where the orientation of the new formation shape is problem inSE(2) and inR? through SOCP, respectively.
fixed, we obtain optimal solutions in bothR* and R*>. The  Additionally, these sections present simulation resuis t
latter also allows for complete regulation of the formation verify the validity of the proposed optimization strategie
size via constraints on the shape scale. We expect that these . g . .
results will prove useful for extending the mission lives of Section VIl reviews how mptlon constraints could be
robot formations and mobile ad-hoc networks (MANETS). accommodated. The complexity of the proposed framework
is discussed in section VIII. Finally, concluding remarks
Index Terms— Shape change, convex optimization, SOCP  and future work are given in section IX.

I. INTRODUCTION II. RELATED WORK

Over the last several years, there has been a great deal ofFormations of robot teams have been extensively studied
interest in developingnobile ad-hoc networkfMANETS)  in the literature, and a complete survey is outside of the
for applications such as environmental monitoring, healttscope of this paper. Instead we focus on those where
care, and homeland security to mention just a few. Onghape- defined differently under different contexts - was
of the major driving factors behind this interest is theof significant relevance to the research.
new robotic applications originating from both the militar Das et al described a vision-based formation control
and the civilian domains. In these roles, tasks may béramework [1]. This focused on achieving and maintaining
extremely difficult for a single robot to accomplish. Thus, a given formation shape using a leader-follower framework.
a system composed of teams of cooperative robots i€ontrol of formations using Jacobi shape coordinates was
desirable because of its flexibility, robustness and faultddressed by Zhanegt al [2]. The approach was applied
tolerance. to a formation of a small number of robots which are

The research challenges encountered in multi-robot anghodeled as point masses. Abstraction based control was
sensor networks require the integration of different disci used by Belta and Kumar as a mechanism to coordinate
plines including biology, optimization, and control. TRer a large number of fully actuated mobile robots moving in
fore, it is not surprising that the related literature esjoy formation [3]. The main idea was to map the configuration
the flavor of a broad spectrum of approaches which havepace of the robot® to a lower dimensional manifoldl.
been utilized for coordinating robot/sensor teams. SpecifThe concept ofshaperefers to the area spanned by the
ically, we are interested in developing optimization basedobots. A local controller was designed based on the state
positioning strategies for formation shape changes introbf the robot and the state on the manifold
teams. Changes in formation shape may be necessitated byRelated studies includeonflict resolution of multi-
new mission objectives, to compensate for node failuresyehicle systems. In conflict resolution, trajectories are
or to accommodate for changes in the environmend,( planned for vehicles operating independently in the same
for obstacle avoidance). By formatishape we are re- space but with potentially conflicting goals. The work of
ferring to the geometrical information that remains whenOgren and Leonard used a dynamic window approach
location, scale, and rotational effects are removed. Thuso avoid obstacles, and included the stability analysis
formation shape is invariant under the Euclidean simyfarit [4]. These approaches often adopt simplified models for
transformations of translation, rotation and scaling. vehicle behavior, but present interesting applications fo

. . optimization-based methods.
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03-1-0142 (through University of Oklahoma.) coordinated fashion to achieve some common goal and/or



seek to maintain some geometrical relationships amonghus, formation shape is invariant under the Euclidean sim-
themselves. Often movement is dictated by measuremeilarity transformations of translation, rotation and $ogl
of gradients of some actual sensor measurements, or sorfl].
artificial potential field. Solutions defined with inter-matb Now consider a formation df > 2 robots in a Euclidean
distance relationships were explored by Bachmayer an8paceR™, m € {2,3}. Let s; € R™ denote the position
Leonard in [5], where methods to measure and projecdf the i** robot relative to some local fram&. Without
gradient information were discussed. The applications foloss of generality, lets; correspond to the origi®. We
these methods are in, for example, data acquisition igenote the formation by the x m matrix
large areas such as oceans where the most advantageous S =Is s ]T (1)
arrangement of sensors may not be to distribute them TPk
evenly, but to have them adapt to concentrate more sensongich is the concatenated coordinates of buobots inF.
in areas where the measured variable has steeper gradientfe can then define the shape®#fs the equivalence class
There has also been significant interest in applyingf the full set of similarity transformations of the formarti
optimization based techniques to coordinate robot teams ., T m
and deploy sensor networks. Contributions in this area [S]=A{aSR+1kd" : a € Ry, B € SO(m),d € R }(2)
include the work by Cortest al [6]. Here the focus is on : . . ;
. : o . wherea € Ry is the scaleR € SO(m) is a rotation matrix
autonomous vehicles performing distributed sensing tasks - !
: X 2 7 and d € R™ is the translation vectolS then corresponds
Recently Feddemet al. applied decentralized optimization .
; . to anicon of the shapdsS].
based control to solve a variety of multi-robot problems . T
: . . . Now let thek x m matrix P = [p1,...,px]” denote the
[7]. Optimal motion planning was considered by Belta . . .
i .~ concatenated coordinates of the current formation pose in
and Kumar [8]. In this work, authors generate a family

. . : some world framely. Our objective is to obtain a new
of optimal smooth trajectories for a set of fully actuated . T
) . ; formation poseQ = [g1,...,qk] in W where@ has the
mobile robots. The case for which robots have independen : g )
me shape a$ under the equivalence relation defined

ggglzzgcthsizzgit?ne[?me space has been studied by LaVaﬁr?e (2), and where either the maximum distance between

First, we should emphasize that while the primar focusthe respective positions i and @ are minimized, or
' P P y where the sum of the distances is minimized. We can now
of these efforts has been control, our results are morF .

; ; i . .~ Tormulate our problem:
appropriate for use in a higher level planning phase. Given Problem 3.2:Given an initial formation pose® in W

an initial format!on.conflggr.atlon and a desired shap.eand a formation shape icoft in 7, P -4 S, obtain a new
we generate objective positions for each robot that W'"formation posa) in W, Q ~ S, and where:

achieve the desired shape while minimizing the distances L .

that the nodes must travel. These objective positions can +) max II'gi = pi || is minimized fori =1,....k OR
then be fed to appropriate controllers to drive the nodes 2) > || ¢; — p; || is minimized

to their desired destinations. What further differensate =1

our work is that (with the exception of perhaps [8] which

focused upon minimizing kinetic energy) the control poli- V. OPTIMAL SOLUTIONS IN SE(2) THROUGH

cies for changing shape did not optimize over the distance SECOND-ORDER CONE PROGRAMMING (SOCP)
traveled by each node. Lastly, our framework leverages \ye first consider the case for operations limited to
recent advances in convex optimization and interior poinigz;2) (on the plane). We can then represent the shape
methods (IPM) to solve the subsequent problems for larggs our icon S as

formations ¢ 1000 nodes) very quickly€.g.~ 1 second)

on current PC technology. [9] = {aSR+1;,d" : a € Ry, R € SO(2),d € R?} (3)

In this sense, our problem can be viewed as the converggy si = (s%,sY) and ¢ = (¢%,¢?) denote Cartesian
1) 1

to the assignment problem [10] where the final pose of th@qordinates L|r’1]:t and W, respectively. Equation 3 then

formation is knowna priori, and the objective is to find represents a set of equality constraints of the form
an optimal assignment of nodes to objective positions. In

contrast, we determine the optimal pose corresponding to q; — a7 = a(sj cost — s{sinf) 4)
t_he objective formation s_hape where assignments remain ¢/ — ¢! = a(s¥sinf + s¥ cos0) (5)
fixed across shape transitions.
fori =2,..., k and where corresponds to the orientation
I1l. PROBLEM FORMULATION of the formation. Without loss of generality, we can define

— _ . ) ... the formation orientation as
The objective of this paper is to provide positioning

strategies for robot teams to efficiently transition to a new 0 = arctan M (6)
formationshape defined as follows: 4 — 47
Definition 3.1: The shape of a formation is the geomet- from which we obtain
rical information that remains when location, scale, and g3 —qf
cosf = (7

rotational effects are removed. g2 —a |



*****

*****

Fig. 1. The initial formation pose for a set of 55 nodesRif (left). The final formation trajectory/pose that achievies tlesired shape while minimizing
the maximum distance that any node must travel (center)rihe optimal values were.93 for scale,—4.6 degrees for orientation an@.41, 1.10)
for translation.

Y Y
gng—=_L~"4U @) and for our total distance metric
g2 — a1 | X
Noting that fora > 0 ands; 2 O, Hq“tn ,El b (15)
" g2 —aqu || © such that |J4q,-—pi o< ts, i=1,...,k
|2 |l ¢=0
we can rewrite the constraints in (4)-(5) as Both forms are equivalent. However, the objective func-
s* s¥ , tions in (14)-(15) are now twice differentiable. We have
-4 =77 (@—¢)- (3 —dq) (10) i it ) -
i [ sz || IET R also introduced: additional second-order cone constraints
. y which are still convex. The problem is now in the form of
Si Si T T - i i
@ —q) = —— (¢ —q}) + ——(¢5 —¢f) (11) a second or_der cone program (SOCP), which has a unique,
[ s2 | | s2 || globally optimal solution. It can be solved very efficiently
fori=3,... k. using modern interior point algorithms [13].
These2(k — 2) constraints are now convex (in fact, Simulation Results:Fig. 1 shows a simulation trial
linear) functions of our state vectar = (q1,.. .,qk)T. demonstrating the process. In this example, 55 nodes were

They are alsmnecessary and sufficiefior describing the tasked with transitioning to a new shape while minimizing
formation shape [12]. The four free variables correspondhe maximum distance that any node must travel. While
to the translation, rotation, and scale as defined in (3). deliberately contrived, this example demonstrates the effi

The problem of finding the formation posg can now cacy of our approach. The formation is able to optimally

be posed as the constrained optimization problems transition from an arbitrary shape to a very specific shape.
min max | g —pi |2 This would typically be the case when a formation of

q i=1,...,k (12) robots was initially deployed. In this example, none of the
such that Ag =0 shape parameters.€, translation, rotation or scale) was

for our minimaxdistance metric defined in Problem 3.2.1, regulated.
and for our total distance metric, we have
V. OPTIMAL SOLUTIONS IN R?/R3

k
min >l @ —pill (13) . - . .
q i=1 We now consider the specific case where the orientation
such that ~ Ag =0 of the shape is fixed. That is
where Aq = 0 denotes the set of constraints defined in
(10)-(11). [Slps = {aS+ 1d" :a e Ry, d e R™}  (16)

While both the constraints and objective functions of

these problems are convex, the form of the latter does ndthich is defined as there-shapeof 5. The constraints
lend itself to traditional optimization techniques. To ey~ "OW implied by this new equivalence class are of the form
this, we augment the state vectgrwith an auxiliary

variablet; for our minimax metric, and withk auxiliary G-q=oas,; 1=2,....k (17)
variablest = (t1,...,t;)" for our total distance metric. hich i in t f biecti it d
The optimization problems in (12)-(13) can then be restateévcaife are linear in terms of our objective position an
as ] This allows us to freely regulate the formation scale. We
n ty assume then that,,;, < @ < dmaz, Omin € Ry For the
such that || ¢ —p; o< t1, i=1,...,k (14)  case of a fixed scale, we need only 8eli, = ®mae. The

Ag=0 problem of finding the formation posg can now be posed
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Fig. 2. The initial dispersion of a set of 192 nodes in a MANH&Tt]. The final formation trajectories and shape that achithe desired{3,6}
tessellation while minimizing the combined distance tHahades must travel (center, right). In this example, bdth desired orientatiord(= 0) and
scale (v = 1) are fixed.

as the constrained optimization problems

shapes that are dramatically different from the current for
mation configurationd.g, a reflection) the optimal shape

ot 2 may be fora — 0. As a consequence, in practice it may
such that || ¢ —pi ||2<t1, i=1,...,k be appropriate to define a scale rangg;, < a < amaz,
¢ — Q1 = QS i=2,...,k (18)  a,.im € Ry, or even to fix the scale so that a more
—a < —Qmin constrained formation shape can be achieved.
a < Omaz For fixed orientation, the constraints are linear dn
and for our total distance metric (Equatlo_n 17), and as a consequence regulatmg_ scale is
accomplished by bounding as discussed in Section V.
. k However, for the more general case discussed in Section
min St ) L
g,a,t = IV the problem is far less trivial.
such that || ¢; —p; ||2<t;, i=1,...,k Consider regulating the scale for a shape o¥ér(2).
(19) o . ;
qi — q1 = a8, i=2,...,k Establishing an upper bound,,,.. for the scale is straight-

—a < —Qmin forward. From our definition above we have

a < Qunag

(20)
This problem is again a SOCP. We should emphasize thallh. is al d-ord .
unlike in Section IV, no assumptions were made in this IS 1S also a second-order cone _constralnt._However,
formulation with regards to the degree of. As such, adding a minimum bognd. or equality cons_tralnt an
it provides optimal solutions in botiR? and R. Also renders. the problem significantly more difficult as the
note that although we are optimizing over the state Vecto?onstramts
r=(q,...,qx )T, them(k — 1) constraintsy; — q; =
asi,i=2,...,k are sufficient to ensure the rigidity of the lez—al = als|
formation. As such, we are in fact optimizing over ogly  are not convex. For these cases, randomization and lin-
anda, which correspond to the translation and scale termgarization/convex restriction techniques can be applied t
of (16). find approximate solutions [14]. However, randomization
Simulation Results:Fig. 2 shows a simulation trial schemes are inappropriate in the presence of equality
demonstrating the efficacy of the approach. In this examplesonstraints. Additionally, the complete lack of conveiity
a mobile ad-hoc network (MANET) of 192 nodes is our lower bound constraint will leave relaxation solutions
initially dispersed on the plane. The desired shape is @ighly dependent upon the shape orientation of the initial
{3, 6} tessellation where both the scale and orientation argasible pointQ, provided. Instead, we propose our own
fixed. The objective is to minimize the combined distanceapproximation scheme.
that the nodes must travel to reach the desired shape. TheSince orientation iNSE(2) is constrained to the in-
motivation for this would be to allow some portion of terval [0, 27), the ability to obtain an optimal solution
the network to remain active for as long as possible. Theor fixed orientations inR? also provides a mechanism
resulting trajectories and final formation shape are als@or approximating optimal solutions iFE(2). We can
shown. accomplish this by constructing a family of shape icons
S = {51,...,S.} corresponding to a discretization of
orientationsd = {64, ...,6.} such that

Si:SlR(Gi—Hl), ’i:l,...,z

|| q2 — q1 ||§ Amax || 52 H

_ > .
la2—aqi |l = cminll 52| (21)

VI. ON REGULATING SCALE

From our definition of shape, the scaleis constrained
to the interval(0, +oc]. This can potentially result in a
formation size that is too large - possibly violating segsin where R(6; — 6;) denotes the rotation matrix relating the
or communication constraints. Alternately, for objectiveshape iconS; to S;.

(22)



By modeling eacly; as a constant, we can approximate  VII. ON INTEGRATING MOTION CONSTRAINTS

the optimal solution by solving theseSOCP in accordance  Thjs framework relies upon the convexity of the underly-
with the procedure in Section V above. The resulting shapghg problem to generate optimal shape transitions for large
Qj, j €1,...,z corresponding to the shape icéh with  formations €.g. > 1000 nodes) very quickly é.g. ~ 1
minimum objective will be our solution. The exactness Ofsecond) using current PC technology. As a consequence,
such an approach will only depend upon the resolution fopygtion constraints can also be accommodated so long as
the discretization of), as the solution for each; will be they can be expressed similarly. As an example, if the
optimal. motion of agent was constrained to a maximum distance

Simulation ResultsA series of simulation trials was dmas, this can also be expressed as a second-order cone
conducted in an attempt to empirically characterize th§gnstraint of the form

performance of this approximation approach. Three dif-

ferent objective shapes;, i € 1,...,3 were chosen | @ —pi I< dmax (23)
corresponding to the three regular tessellations on thveepla This would allow less mobile (or fixed) nodes to be
{3,6},{4,4} and {6, 3}, respectively [15]. For each trial 4ccommodated. Others might be expressed in terms of
J, the initial shapeP; was obtained by perturbing the |inear constraints. As an example, a formation wanting to
position of each node in the objective shafgwith a  majntain positive velocity in the-direction could ensure
displacement randomly sampled from a two-dimensionajhis py specifying a minimum forward distance traveled

Gaussian distribution. d,.i for each node as
For a performance baseline, the optimal formation pose . . '
was first obtained in accordance with Section IV. Our 4G =P = dmin, 1 €1,k (24)

approximation scheme then attacked the same problem by |n symmary, if the motion constraints can be expressed
solving the set of SOCPs for the family of shape iconsin terms of some combination déasiblelinear, second-
obtained from discretizing in accordance with (22). To grder cone, or semidefinite constraints, they can be dyrectl

be consistenty was unconstrained in both cases. integrated within our framework.

A total of 100 trials with 12 nodes was conducted for
eachsS;. A statistical summary of the results for orientation x *
discretizations ofi°, 5°,10° and 20° is provided at Table *\\T * %
I. Note that the values are normalized against the optimal N * * x
distances obtained from our baseline simulations. Thus, an e\ ox ok
entry of 1.1 denotes that theinimax distance achieved 71\ s

from the approximation scheme was 10% greater than the
optimal distance.

TABLE | .
NORMALIZED DISTANCES FORMinimaxA PPROXIMATION L
Objective df Mean Median Max.
Shape | (degrees)| Distance | Distance | Distance e
* 0k ok Kk K
{3,6} 1 1.001 1.002 1.005
(3,6} 5 1.007 | 1.003 | 1.040
{3,6} 10 1.016 1.012 1.076 Fig. 3. Shape transitions for a team of 15 robots with no nmotienstraints
{3,6} 20 1.046 1.030 1318 (top row) and withg? — p? > 0,7 € 1,...,k (bottom row). In both
{4,4} 1 1.001 1.000 1.006 instances, the objective was to migrate from the initihimishape (black
{4,4} 5 1.001 1.004 1.040 circles) to a triangular shaped formation (red stars). Ageeted, the
{4,4} 10 1.015 1.010 1.066 additional constraints for the latter increased the minirdéstance for
{4,4} 20 1.044 1.020 1.281 the formation (by 87% in this case).
{6, 3} 1 1.001 1.000 1.005
{6, 3} 5 1.009 1.005 1.044
{6,3} 10 1023 | 1012 | 1136 Simulation ResultsA sample simulation trial showing
{6, 3} 20 1.053 1.032 1.298

formation shape changes without (top row) and with (bot-
tom row) motion constraints is shown at Fig. 3. In both
As expected, performance is strongly tied to the resolueases, the objective was for the team of 15 robots to
tion of . For an orientation discretization a@f, results of transition from an initial inline shape to a triangular sedp
all trials were within 1% of the optimal solution in each formation. Optimization was over our minimax metric. For
category. While mean and median performance for highethe latter case, the minimum forward distance traveled
resolutions remains quite good for discretizations upfg ~ for each node was constrained &% — p! > 0, i €
the errors can still be significant at discretizationsasdéw 1,..., k. Scale and orientation were fixed in both cases.
While performing a large number of iterations is far from As expected, the objective shape was reached in both
ideal, this approach may prove useful for the case wher@stances. However, the additional constraints for thedat
lower bounds on the formation scale must be explicitlycase increased the minimax distance for the formation (by
constrained. 87% in this example).



VIIl. ON COMPLEXITY problems. We are currently looking at the potential for
merging these into a single convex formulation.

_ N ) 2 While our results generate optimal positions, the subject
of the underlying optimization problem in which it was q¢ rohot control has been heretofore ignored. We are
posed. The SOCP formulation requir€$/k) iterations currently investigating extending these results by regula

to reduce the duality gap to some constant fraction of,q yelocity profiles via motion constraints in order to

itself. For general problems, the amount of work for eachyngre collision free trajectories. We will also investiga

i i i 3 i 3.5
iteration isO(k?), for a total complexity ofO(k*®) [13].  intaqrating our current results into more traditional coht
However, our problem is very structured. The format Ofapproaches

the constraints representing both shape and distance 'SFinaIIy as an extension, the emergent field of nanoassem-

invariant to formation size. Furthermore, the constraints‘my (i.e. the programming and coordination of large num-

are inherently sparse, with each involving onfy(m)  por of nanorobots [18]) may benefit from the results
variables regardless of the size kf Exploiting both of presented herein.

these characteristics can result in a significantly reduced
per-iteration complexity, withO(k?) being a more likely

bound. Empirical results in [16] imply that problems of 1] A K. Das, R, Fi w 3. P. Ostrowski, J. Spletzand
. - . K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Splefzan
> 1000 nodes can be solved i 1 second with current C. J. Taylor, “A vision-based formation control framewdrkEEE

PC technology and efficient software implementations. Trans. on Robotics and Automatiowol. 18, no. 5, pp. 813-825,

Furthermore, these algorithms lend themselves to dis-  October 2002. , ,
ibuted . R lts f llel i | [2] Fumin Zhang, Michael Goldgeier, and P. S. Krishnapras@antrol
tributed computation. Results from parallel implementa- of small formations using shape coordinates,” Hroc. IEEE Int.

tions indicate a near linear speedup is possible [17]. This  Conf. Robot. AutomatTaipei, Taiwan, Sep 14-19 2003, vol. 2, pp.

of course comes at the expense of communication require-_ = 2510-2515. ,
. . [3] C. Belta and V. Kumar, “Abstraction and control for graupf
ments, but would permit our approach to be implemented™ o |EEE Trans. on Robotics and Automation, 2004
on embedded class processors for reasonably large formg4] P. Ogren and N. E. Leonard, “A tractable convergent dynamic
tions. window approach to obstacle avoidance,” IEEE/RSJ Int. Conf.
on Intelligent Robots and Systentsausanne, Switzerland, October
2002, vol. 1, pp. 595-600.
IX. DISCUSSION ANDCONCLUSIONS [5] R. Bachmayer and N. E. Leonard, “Vehicle networks fordigat
descent in a sampled environment,”Rroc. IEEE Conf. on Decision

In this paper, we have devised a framework for repo- _ and Contro] Las Vegas, NV, Dec. 10-13 2002, pp. 112-117.

itioni f i f bots t h hil [6] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Gage control
siuoning a formation of robots 10 a new shape while for mobile sensing networks,” IEEE Trans. on Robotics and

minimizing either the maximum distance that any robot Automation vol. 20, no. 2, pp. 243-255, April 2004.

travels, or the total distance traveled by the formation.[7] J- T. Feddema, R. D. Robinett, and R. H. Byme, “An optiatian
approach to distributed controls of multiple robot velsgle in

: ) . 3 ' . .
Optimal S.OIUt'OnS iNSE(2) a.ndR for fixed orientation Workshop on Control and Cooperation of Intelligent Mini&u
were achieved for both metrics through second-order cone  Robots, IEEE/RSJ International Conference on IntelligRabots

programming (SOCP) techniques. Recent advances in in-_ and Systemd.as Vegas, Nevada, October 31 2003. _
terior point methods for solving such problems can allow [8] Calin Belta and Vijay Kumar, “Optimal motion generatidr
p g p groups of robots: a geometric approach®SME Journal of Me-

optimal positions for formations of 1000 robots to be chanical Designvol. 126, 2004.

solved very efficiently (in~ 1 second). We feel that these [?] S:M. Lavalle and S.A. Hutchinson, “Optimal motion plang for
multiple robots having independent goalEfEE Trans. on Robotics

results will be useful in formation control and mobile ad- and Automationvol. 14, no. 6, pp. 912-925, Dec. 1998.
hoc network deployments. [10] H. W. Kuhn, “The hungarian method for the assignmentfem,”
i iynifi it Naval Research Logistics Quarterly gp. 83-97, 1955.

Despite these reSL.jltS' there z_are 5|gn|f|cant Opp_ortun_ltleﬁl] I. L. Dryden and K. V. Mardia, Statistical Shape AnalysisJohn
for future work. While we achieve optimal solutions in Wiley and Sons, 1998.
SE(2), we are only able to regulate an upper bound12] D. Kendall, D. Barden, T. Came, and H. LeShape and Shape

n the formation lev. In man lication lower Theory John Wiley and Sons, 1999. )
on the fo . ation scalex any app .Cato S a 0 e [13] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Apptions of
bOU.nQ or fixed value fora_may.be desirable .Whlle.StII! second-order cone programmingdijhear Algebra and Applications,
optimizing over shape orientation. We are investigating Special Issue on Linear Algebra in Control, Signals and lenag

S it - i Processing 1998.

alternate deﬂ_n_ltlons of scale in an attempt to aChle.V 14] A.d'Aspremont and S. Boyd, “Relaxations and randordirgethods
such a capability. We shall also evaluate convex relaxatio for nonconvex gegps,” Stanford University, 2003.
techniques and contrast these results to our current approi5] E. Weisstein, “Tessellation,” http://mathworld.iraim.com/ Tessel-

imation algorithm. lation.html, 1999. _ o
ation algorit [16] L. Doherty, K. Pister, and L. EI Ghaoui, “Convex positiestimation

An optimal solution inSE(3) would also appear to be a in wireless sensor networks,” Proceedings of IEEE InfocanApril
next logical step. However, the ability to extend our result 2001. ) = . _
from SE(2) is not immediately obvious. We will take a 7] J: Gondzio and A. Grothey, “Exploiting structure in ifel imple-

. . mentation of interior point methods for optimization,” TedRep.

more formal look at this problem in the near future. MS-04-004, School of Mathematics, The University of Edirgy

We shall also look at extending our definition of shape " ReACéOfg‘- cha “Nanorabot § .
to include assignment. The optimal solution to [10] cant® Céeai,{gsec,?utﬁe?izgag?oéi, ?lg ffn;% ?8223%%%8,5'30&@863-
be achieved through a linear programming formulation.

Thus, both problems can be posed as convex optimization

The complexity of the framework corresponds to that
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