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Summary. In this paper, we present the Automated Transport and Retrieval System (ATRS).
ATRS represents an alternative to van conversions for automobile drivers with lower body dis-
abilities. It employs robotics and automation technologies that integrate into a standard mini-
van or sport utility vehicle (SUV). At the core of ATRS is a “smart” wheelchair that navigates
between the driver’s position and a powered lift at the rear of the vehicle - eliminating the
need for an attendant. From an automation perspective, autonomously docking the wheelchair
onto the lift platform presented the most significant technical challenge during system devel-
opment. This was driven by geometry constraints, which limited clearance between the chair
wheels and the lift platform rails. To solve this problem, weemployed an LMS291 LIDAR in
conjunction with an Extended Kalman Filter for reliable andaccurate wheelchair localization.
Coupled with a hybrid controller design, the system has proven to be exceptionally robust.
This was validated through extensive simulation and experimental results, culminating in a
three-day demonstration at the 2006 World Congress and Exposition on Disabilities where the
system completed over 300 consecutive cycles without a failure.

1 Introduction and Motivation

According to the U.S. Bureau of Transportation, over six million people with dis-
abilities have difficulties in obtaining the transportation they need [1]. This is a major
contributor to the unemployment rate of the disabled population nationally, estimated
at over 65% by the U.S. Census Bureau [2].

A van conversion currently represents the sole personal transportation solution
for an individual in a wheelchair. Van conversions start with a standard van pro-
duced by a major automotive manufacturer. The van is subsequently modified or
“converted” by another company, usually a specialized mobility equipment manu-
facturing company or mobility dealer. The modifications arepermanent, and include
extensive changes to the chassis, frame, and interior. Typical modifications include
removing and lowering the vehicle floor, and relocating/replacing major subsystems
such as the gas tank, fuel system, and heating/cooling systems of the vehicle [3].
While enabling independent mobility, van conversions represent a costly and unsafe
transportation solution for wheelchair users.
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To eliminate these shortcomings, we have developed a technology-based alter-
native to van conversions for wheelchair users: the Automated Transport and Re-
trieval System (ATRS). ATRS employs robotics and automation technologies, and
can be integrated into a standard mini-van or sport utility vehicle (SUV). At the core
of ATRS is a “smart” wheelchair system that autonomously navigates between the
driver’s position and a powered lift at the rear of the vehicle. A primary benefit of
this paradigm is the operator and chair are separated duringvehicle operations as
well as entry/exit. This eliminates the potential for injuries or deaths caused by both
improper securement (as the operator is seated in a crash tested seat system) as well
as lift malfunctions. Furthermore, by eliminating thedrasticandpermanentvehicle
modifications associated with van conversions, ATRS will cost significantly less.

2 Related Work

Extensive work has been done in order to increase the safety levels of power
wheelchairs while minimizing the level of human intervention. In these systems, the
human operator is responsible for high-level decisions while the low-level control of
the wheelchair is autonomous.

The Tin Man system [4], developed by the KISS Institute, automates some of the
navigation and steering operations for indoor environments. The Wheelesley project
[5], based on a Tin Man wheelchair, is designed for both indoor and outdoor environ-
ments. The chair is controlled through a graphical user interface that has successfully
been integrated with an eye tracking system and with single switch scanning as input
methods. The TAO Project [6] provides basic collision avoidance, navigation in an
indoor corridor, and passage through narrow doorways. The system also provides
landmark-based navigation that requires a topological mapof the environment. The
NavChair assistive wheelchair navigation system [7] uses feedback from ultrasonic
sensors and offers obstacle avoidance, door passage, and wall following modes. More
recently, the SmartChair [8] uses a virtual interface displayed by an on-board projec-
tion system to implement a shared control framework that enables the user to interact
with the wheelchair while it is performing an autonomous task.

A common theme in the above research is the robotics technology has been ap-
plied to assist or augment the skills of the chair operator. In contrast, the ATRS
wheelchair is in fact capable of autonomous vehicle navigation in outdoor environ-
ments. This can be realized because the operator is never seated in the chair during
autonomous operations, and the chair always operates in thevicinity of the automo-
bile. The former constraint mitigates operator safety issues, while the latter provides
significant, invariant landmarks/features in an otherwiseunstructured environment.

3 System Overview

In describing the ATRS operational procedures, we refer to Figure 1. When the oper-
ator returns to his/her automobile, a keyless entry is used to both unlock the vehicle
and to deploy the traversing driver’s seat. The operator then positions the wheelchair,
and performs a seat-to-seat transfer (pose A). After this, the wheelchair is deployed
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Fig. 1. ATRS concept diagram illustrating the primary system components.

to the rear of the vehicle (pose B). In our proof-of-concept system, this side traversal
was completely autonomous [9]. In the current system – referred to colloquially as
“ATRS-Lite” – the wheelchair is remotely controlled by the vehicle operator via a
joystick located at the UI. Once the chair enters the LIDAR’sfield-of-view at the
rear of the vehicle (pose C), it is automatically tracked. The UI then cues the opera-
tor to place the wheelchair into “docking” mode. This enables the van-side computer
to transmit real-time control inputs to the chair over a dedicated RF link for reliable
docking (locking in place) onto the lift platform (pose D). With the chair docked,
the operator actuates the lift via the UI – stowing the platform and chair into the
vehicle cargo area. The process is repeated in reverse when disembarking from the
automobile. We should emphasize that when not operating autonomously, the ATRS
wheelchair is placed in “manual mode,” and operates no differently than any other
powered wheelchair

The primary focus of this paper is the development of a reliable, autonomous
means for docking (and undocking) the ATRS wheelchair onto (and off of) the vehi-
cle’s lift platform. Our current approach employs a SICK LMS291-S14 LIDAR sys-
tem in conjunction with an Extended Kalman Filter (EKF) for estimating the chair
pose. EKF techniques for feature-based mobile robot localization were pioneered by
Durrant-Whyte and others (e.g., [10]), and such an approach has also proven to be
well suited for our application.

4 Wheelchair Localization

To reliably execute docking under a broad range of environmental conditions,
wheelchair localization requires both robust feature segmentation as well as accu-
rate pose estimation with respect to the lift platform. The platform mounted LMS291
LIDAR system provides bearing, range, and reflectivity measurements that are lever-
aged for robust feature segmentation. The positions of these features - in conjunction
with the control inputs to the chair - are then used as input toan Extended Kalman
Filter that estimates the wheelchair pose over time. Details of the localization process
are as follows.
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Fig. 2. (left) The Tracker
TM lift platform with integrated LMS291. The LIDAR housing

provides both environmental protection, as well as improves the system SNR. (right) Range
(top) and reflectivity (bottom) data from a single LIDAR scan. As was typical, reflectivity
measurements alone were adequate for segmenting the two target features.

4.1 Feature Segmentation

The primary sensor used for estimating the wheelchair pose with respect to the lift
platform is a SICK LMS291 LIDAR. Figure 2 (left) illustratesa typical integra-
tion of the LIDAR into the vehicle lift platform. The LMS291 measures the line-
of-sight range to objects in the environment over a90◦ degree field of view with a
discretization of0.5◦. Each of these measurements can be written as a tuple of the
form zm = [r, α, γ]Tm, m = 0...180, whererm andγm denote the measured range
to and reflectivity of themth feature at a bearing ofαm = m

2 − 45◦ with respect
to the LIDAR sensor frameL. We exploit the reflectivity measurements to greatly
simplify the segmentation problem. A pair of target features{tl, tr} made from retro-
reflective material are permanently affixed to the wheelchair chassis. When imaged
by the LIDAR, a significant portion of the incident beam is reflected directly back
to the detector, saturating the photo-diode (Figure 2 (left)). This allows a simple
threshold on reflectivityγmin to be used as the primary filter for segmenting the tar-
get features. An additional level of filtering is based upon arange constraintrmax.
As the wheelchair is presented in the immediate vicinity of the lift platform, targets
at excessive ranges (e.g.> 4 meters away) can immediately be disqualified from
potential features of interest. From these two filters and assuming a ground plane
constraint, we construct a valid feature set

F =

[

rn cosαn

rn sin αn

]

, s.t. rn < rmax, γn > γmin (1)

A final level of filtering exploits a priori knowledge of the relative geometry
of the wheelchair targets. Candidate targetsT⊃{tl, tr} are identified via clustering
the candidate feature setF in Euclidean space using the actual target size (plus a
tolerance) as a constraint. Pairs of targetsti, tj ∈ T are then examined using the
actual target distance||tl − tr|| as a binary filter to identify the correct target pair in
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the LIDAR scan. If a valid target pair cannot be identified, the operator is alerted to
take corrective action (i.e., reposition the chair) and the process repeated.

4.2 Pose Estimation

An Extended Kalman Filter (EKF) is used to estimate the chairpose. The predic-
tion step employs feedback from the on-board encoders, while the correction step
leverages the target positions recovered from the segmentation process. The pro-
cess model for the EKF is based upon the standard kinematic motion model for
the differential-drive wheelchair, and is not covered herein the interest of brevity.
Instead, we focus upon the measurement update phase of the EKF where position
estimates of the two retro-reflective targets are used to correct the pose estimate. A
straight-forward approach to modeling the LIDAR measurements would be to derive
the measurement JacobianH based upon the range and bearing measurements. There
are potential shortcomings with such an approach. The corresponding measurement
equations (for bearings in particular) are highly non-linear, and are not well modeled
by a first-order approximation. Ultimately, this could leadto poor filter performance.
Instead, with each LIDAR scan we directly estimate the position of the features in
the world frame. This is straightforward from the availableLIDAR measurements

z(tk) =

[

xl

yl

]

tk

+ ri

[

cos(αi + θl)
sin(αi + θl)

]

tk

i ∈ {1, 2} (2)

where[zxi
, zyi

]T corresponds to the position of theith feature in our world frame
W , [xl, yl, θl]

T reflect the coordinate transformation from the LIDAR sensorframe
L to W , and(ri, αi) denote the range and bearing measurements to theith target
with respect toL. These feature positions are then are used directly by the filter.
This is akin to using GPS measurements in the filter rather than the raw range mea-
surements from which they are formed - a common practice in mobile robotics. The
corresponding measurement equations for the filter can thenbe written as

hi(tk) =

[

x
y

]

tk

+

[

cos θ − sin θ
sin θ cos θ

]

tk

[

ai

bi

]

(3)

where [ai, bi]
T denotes the fixed position of theith target in the robot frameR,

andθ corresponds to thepredictedwheelchair orientation at thekth time-step. The
resulting measurement Jacobian is

Hi(tk) =

[

1 0 −ai sin θ − bi cos θ
0 1 ai cos θ − bi sin θ

]

(4)

One issue remaining is properly modeling the covariance of the resulting sensor
measurements. Each range and bearing measurement defines a new coordinate frame
with basis vectorsu1 = [cosαi, sin αi]

T , u2 = [sinαi,− cosαi]
T . The uncertainty

in the u1 direction corresponds directly to the variance of the rangemeasurement
σ2

u1
= σ2

r . Uncertainty in theu2 direction is a function of the uncertainty of the
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bearing angle measurement whereσ2
u2

= r2
i sin2 σα. Noting that for the LMS291,

σα is in fact quite small (< 1◦), this can be very well approximated byσ2
u2

= r2
i σ2

α.
Since this transformation is linear in terms ofσα, we expect the characteristics of the
(assumed Gaussian) noise of the bearing measurements to be preserved.

The last step is to transform the corresponding covariance matrix toW . This can
readily be accomplished through the similarity transform

Ri(tk) = Ti(tk)

[

σ2
r 0
0 r2

i σ2
α

]

Ti(tk)T (5)

where

Ti(tk) =

[

cos(αi + θl) − sin(αi + θl)
sin(αi + θl) cos(αi + θl)

]

tk

(6)

and whereRi is the measurement covariance for theith target. The correction step
for the EKF can then be written in standard form.

5 Wheelchair Control

From an automation perspective, two aspects to the control problem must be con-
sidered:motor control andmotioncontrol. The motion controller generates higher
level velocity commands vanside based upon the current chair pose as estimated via
the localization system presented in Section 4. These are inturn transmitted to the
powerchair over a dedicated RF link, which regulates the wheel velocities to achieve
the objective linear and angular velocities for docking.

5.1 Motor Control

The wheelchair employs a differential drive system where the motion controller
transmits objective linear and angular velocities, which are in turn mapped to wheel
velocities. These are then regulated via a PID controller implemented in software
on the chair’s embedded PC. Feedback to the PID is provided via high-resolution
quadrature encoders that measure right and left wheel travel (∆φL, ∆φR) at 100Hz.
To properly model motor controller performance, experiments were conducted to
characterize the latency between controller input and chair actuation. These tri-
als indicated typical latencies of 500-600ms between motorcontroller input and
wheelchair actuation. When considering the nominal linearvelocity of the chair was
40 cm/s, and the clearances associated with docking were on the order of 4 cm, such
a delay was significant. This influenced the design of the motion controller, as dis-
cussed in the sequel.

5.2 Motion Control

Motion controller design was influenced by real-world constraints associated with
system use. These included not only the controller latency,but also docking clear-
ances and the constrained ground area adjacent to the vehicle for navigation. As
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such, our motion planner employed a hybrid control design consisting of two pri-
mary controller modes: course-correction, and path-following. In this paradigm,
gross y-position errors were first corrected (when necessary) in the course-correction
phase before proceeding to path-following for docking. e now describe each mode in
greater detail.

Path-following Phase

Path-following was the primary controller mode, and the oneused for docking onto
the lift platform. It employs a traditional PD controller derived using I/O feedback
linearization techniques

ω = −kv tan θ −
kpy

v cos θ
(7)

whereω andv are the desired linear and angular velocities transmitted to the chair,
v is assumed piecewise constant, andkv, kp are positive controller gains. For safety
considerations, we specify maximum linear and angular velocities [vmax, ωmax]T

for the chair. Typical values were 0.4 m/s and 0.8 rad/s in practice (significantly less
than what can be achieved by the actual hardware). To accommodate these limits, we
borrow from [11] and constrain the actual controller inputsto

ωact = S(ω) arg min{|ω|, ωmax} , vact = ωact

ω
vmax (8)

whereS() corresponds to thesign function. These constraints ensure that while the
wheelchair will no longer follow the same trajectory specified by (7), it will follow
the same path while protecting against actuator saturation.

One further refinement was made immediately preceding path-follwing mode by
an orientation correction. The intent was to find an initial orientationθ∗ such that the
magnitude ofω0 is minimized - and ideally zero. From (7), we obtain two possible
solutions:

θ∗ =

{

− arcsin

(

kpy

kvv

)

,− arcsin

(

kvv

kpy

)}

(9)

So, for the case where|(kpy)/(kvv)| ≤ 1 there is an initial orientation for our path
follower that requires zero initial angular velocity. Fortunately, our configuration pa-
rameters allow such an orientation to be readily achieved. Thus, all initial orientation
error can be removed prior to initializing the path-follower controller.

Course-Correction Phase

To enhance ATRS docking reliability, a course-correction mode is also incorporated
to address gross y-position errors. This controller phase is activated after initial lo-
calization in autonomous modeonly if it is determined that the path-following mode
would be at risk for failing to dock the chair at the handoff location provided by the
operator (e.g., for large y-position errors with the chair left too near thelift platform).
In this event, we again exploit the chair’s two degrees of mobility to align the chair
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Fig. 3. Docking trial simulation illustrating controller course-correction to eliminate gross
y-position errors. At position C, the wheelchair switches to path-following mode for final
docking. In this example,θmax = 75

◦.

along the x-axis in our world frame. This is accomplished through the following set
of control inputs.

dθR = −θmaxS(y0) − θ0 , dxR = abs(y0)
sin θmax

(10)

wherey0, θ0 denote the initial y-position and orientation of the robot,respectively,
andθmax corresponds to a maximum allowable orientation angle for the wheelchair
that ensures both retro-reflective targets will be visible to the LIDAR (somewhat less
than90◦). The effect of these inputs is illustrated in simulation atFigure 3. The first
reorients the wheelchair from its initial pose (A) to one more normal to the x-axis
(B). After this, the chair translates to approximatelyy = 0 (C). At this point, the
controller switches to path-following, where the initial orientation correction will
reorient the wheelchair for docking. The net result is a dramatic reduction in the
settling distance, which also reduces the impact of latencyon controller robustness.
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Fig. 4. Controller performance with the PD control law (left), orientation correction integrated
(center), and course-correction added (right). The lattereliminated residual poses associated
with docking failure. Simulation resolution was 1cm2

6 Simulation Results

Docking performance was first extensively evaluated in simulation. Our simulation
model echoed the real-world system characteristics to the extent possible. It inte-
grated the EKF for localization, and included (incompletely) modeled estimates for
controller latency, process noise in the odometry system, and measurement noise
for the LIDAR. Monte-Carlo simulations were then run over the range of feasible
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Fig. 5. ATRS demonstration at WCD2006. The operator performs a seat-to-seat transfer (left),
and then remotely controls the wheelchair to the vicinity ofthe lift platform (center). At this
point, the LIDAR tracks the chair while sending real-time control inputs over a dedicated RF
link. Autonomous operations conclude with the chair successfully docked (right).

poses to identify potential failure conditions for docking. These were also useful in
demonstrating the evolution of the controller strategy.

Figure 4 illustrates the results of a Monte-Carlo simulation used to assess con-
troller performance. Green and red dots reflected whether the corresponding initial
position resulted in a successful or failed dock attempt, respectively. For purposes of
this simulation, success corresponded to orientation and y-position errors less than
10◦ and 5 cm, respectively, before the chair reached the ramp of the lift platform.
Figure 4 (left) reflects the performance of the path-follower component from (7)
alone. Controller performance is improved when path-following is preceded by an
initial orientation correction (center), while all failure modes were eliminated with
the integration of the course-correction component (right).

As a testament to the fidelity of the simulation, the gains used for the path-
follower controller on the actual vehicle were nearly identical to those obtained
through the simulation process.

7 Experimental Results and Future Work

Over the past six months, the beta ATRS has been tested acrossa range of condi-
tions. This included three days of continuous demonstrations at the World Congress
Exposition on Disabilities (WCD 2006) in November 2006. Conference participants
were also given the opportunity to test the system. Over 300 cycles of docking
and undocking were conducted during this time without a single failure. A sam-
ple trial is illustrated at Figure 5. A video of this same trial can be viewed at
http : //vader.cse.lehigh.edu/

While we are optimistic that this framework is sufficiently robust under real-
world conditions, additional work remains. In the shorter term, this includes inte-
grating a gyroscope with the odometry system to detect wheelslippage, as well as
actuating the LIDAR pitch to relax our ground-plane assumption and reduce the fidu-
cial size. In the longer term, we are also investigating an active vision system to be
used in conjunction with (or as an alternative to) the LMS291.
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