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Abstract—In this paper, we investigate the potential for en-
hancing the perception capabilities of smart wheelchair system
(SWS) in an urban environment through intensity-based terrain
classification. A 3D camera system was employed that provided
both range and intensity (remission) measurements to objects in
the scene. The feature space of the sensor measurements was
decomposed into range p, bearing angle ¢, and intensity value ~.
We then constructed stochastic models by discretizing the feature
space into cells, each of which corresponded to a probability mass
function (PMF) denoting the probability a point in the feature
space belonged to one of four classes: grass, sidewalk, street
(blacktop), or unknown. The stochastic models were generated a
priori from literally millions of labeled point measurements of the
different terrain classes. Bayesian filtering techniques were then
used to make a terrain class assignment for ground plane cells in
the local map over time. We illustrate the utility of the approach
by demonstrating autonomous sidewalk following of the SWS
over hundreds of meters solely through terrain class assignment.
Extensions such as enhanced ground plane segmentation are also
discussed.

I. INTRODUCTION

Smart wheelchair systems (SWS) have been an active re-
search area for nearly three decades. While the breadth of
research is too great to summarize here, a survey as of August
2005 by Simpson can be found at [1]. More recent projects of
note include the MIT Intelligent Wheelchair Project [2], the
goal of which is to develop a voice-commanded autonomous
wheelchair intended for use in indoor environments. The
Home, Lift, Position, and Rehabilitation (HLPR) Chair [3]
being developed by NIST is a special-purpose device to
provide independent patient mobility for indoor tasks, such
as moving to and placing a person on a chair or bed. The
Personal Mobility and Manipulation Appliance (PerMMA)
[4] is being developed at the University of Pittsburgh and
Carnegie Mellon University with the objective of combining
manipulation and mobility assistance in support of complete
independence for its users. Despite these efforts, commercial
SWS solutions remain elusive. One exception is our work
on the Automated Transport and Retrieval System (ATRS)
[5]. Through the use of robotics and automation technologies,
ATRS improves automobile access for power wheelchair users
by eliminating the need for an attendant to stow and retrieve
the wheelchair. The system received U.S. Food and Drug
Administration (FDA) approval in 2008, and is currently
available commercially [6].

The emphasis of our current work is autonomous navigation

of SWS in urban environments. In [7], we showed that using
a map-based localization approach, our SWS could reliably
navigate from Lehigh’s Packard Laboratory to the university
bookstore, a distance of approximately 1 km round trip. Dur-
ing these experiments, we also noted environmental features
that could lead to system failure under certain conditions.
For example, a sidewalk bordered by grass or mulch beds
would often be entirely classified as sidewalk based upon
ground plane geometry. A similar limitation of ground plane
segmentation approaches was also seen in sidewalk areas with
low-lying curbs. At times, transitions between the street and
sidewalk could not be detected.

The take-home message from these scenarios is that ge-
ometry alone is insufficient for robust navigation in urban
environments. To be certain, we are not alone in reaching
this conclusion. In a study on accessibility in urban settings,
Meyers et al. found that the most common environmental
barriers to wheelchair navigation are steep ramps, sidewalk
obstructions, rough terrain, total travel distance, and lack of
curb cut outs [8]. Therefore, an appropriate map to facili-
tate sidewalk-level navigation must include not only standard
geometric information, but also semantic labels delineating
features like terrain type, curbs and cutouts, and sidewalk
grade. To this end, in this work we investigated the potential
for augmenting the navigation performance of a SWS through
intensity-based terrain classification. A 3D camera system was
employed in conjunction with Bayesian filtering techniques
to apply a stochastic label to each cell in the local map
representing the likelihood it belonged to each of four classes:
grass, sidewalk, street, and unknown. Experimental results
demonstrating autonomous sidewalk following for several hun-
dred meters highlight the potential utility of the approach.

The remainder of this paper is organized as follows: after
discussing related works, we introduce our perception platform
in Section III. Next, we detail the map and model generation
process in Section IV. In Section V we benchmark our model
against a neural network implementation to assess its efficacy,
and present the results of several autonomous experiments.
We conclude with a discussion of results and future work in
Section VI.

II. RELATED WORK

Current approaches to terrain classification are diverse, and
employ a wide array of hardware and algorithms to distinguish



terrain types. Typical methods can be divided into three
groups: vibration-, vision-, and geometry-based.

Vibration-based approaches use an inertial measurement
unit (IMU) to measure the accelerations a robot experiences
during its operation. Typically, machine learning techniques
compare inertial readings to data learned during a training
period to classify terrain [9], [10]. The biggest shortcoming
of this method is that the robot can only classify terrain it
is currently on, thus rendering vibration-based classification
unsuitable for avoiding undesirable terrain.

Vision-based techniques use a camera to capture informa-
tion about the ground ahead of the robot. Color and texture
information is analyzed and again compared against data
learned in a training phase [11], [12]. However lighting and
weather conditions can render the training set ineffectual.

Most recently, exteroceptive sensors such as 3D LIDARSs
have been used to classify terrain using range and geometry
information [13], [14]. With these techniques, 3D point clouds
are composed into a scene and geometric features are used
to draw inferences about surface type. Terrain classification
using 3D laser remission has been explored in [15] and [16].
Remission-based classifiers for active emitters such as LIDAR
are exceptional as they are less dependent on ambient lighting
conditions. Both Saitoh ef al. and Wurm et al. use remission
to discern street from grass. While Saitoh et al. report only
1% false positives using an online learning approach, their
experimental data show significant false negative errors. The
work of Wurm et al. is most similar to ours. They use
range, bearing, and intensity as features to train a SVM,
and demonstrate over 99% accuracy in both false positives
and negatives. However, while they find that street and grass
classes are easily separable by range, bearing and intensity
(our work agrees with this), our findings indicate overlap when
an additional sidewalk class is added. As a result, we propose
a stochastic approach.

III. DEVELOPMENTAL PLATFORM

The SWS used in this work is shown at Figure la. It is
based upon an Invacare M91 Pronto electric power wheelchair,
but upgraded with the ATRS’ Motion Control Module (MCM)
to enable autonomous control [5]. For exteroceptive sensing,
the platform integrates a pair of IFM O3D200 3D cameras
highlighted in Figure 1b [17]. Unlike 3D sensors such as
the Microsoft Kinect, the IFM can operate in direct sunlight.
Moreover, the it provides both range and intensity measure-
ments. The latter is indicative of the reflectivity of objects
in the scene, which is crucial for our application. The IFM
is compact and relatively low cost (less than $1,500 US).
However, it has a relatively low resolution (50 x 64 pixels), a
narrow field of view (30° x 40°), and limited effective range
(= 5 meters in our application). Despite these limitations, we
could find no better 3D sensor available on the market at this
price point. Note our SWS integrates a pair these sensors to
augment the horizontal field of view.

Motor control for the SWS was accomplished with an on-
board embedded computer. A software-based PID controlled

(a) Smart Wheelchair System

Fig. 1: The SWS platform (left) integrates two IFM O3D200 3D cameras
for exteroceptive sensing, high-resolution encoders, GPS, and an inertial
measurement unit. The IFM sensors (right) measure both range and reflectivity
of objects in the environment.

(b) IFM O3D200 3D Camera

the individual wheel velocities using feedback from high
resolution quadrature encoders (4,096 CPR), and a Microstrain
3DM-GXI1 inertial measurement unit provided gyro correc-
tions for improved odometry performance. With the exception
of motor control, all processing was done by a laptop com-
puter with a 1.6 GHz Intel 720QM processor. The software
architecture was based on Willow Garage’s Robot Operating
System (ROS) [18].

IV. TERRAIN MAP GENERATION

The primary objective of our terrain classification approach
is to build a map of urban terrain, which includes street,
sidewalk, and grass terrain types. This additional semantic
information has the potential to not only support terrain-based
navigation, but also to enhance existing perception algorithms
that rely upon geometry information alone. In this section,
we discuss a discrete probabilistic classification model that
associates a stochastic label with an observation, which then
enables the construction of a terrain occupancy map.

The sensor employed in this work was an IFM Efector
03D200 3D camera system. It provides 3D range measure-
ments, which enable the SWS to see far enough to make
decisions based upon geometry; and remission measurements,
which provide a metric to differentiate materials. The chosen
feature space for terrain classification was range p, bearing
angle ¢, and remission value y based on [15]. Thus the ith
observation in this space at time ¢ is z; ; = [pi, s, %-]T. Range
and bearing angle were defined as

pi =\ T} + Y7+ 27 (1)

¢; = arctan 2(y;, x;) 2)

where (4,7, ;) is the i*" point in the camera image. Equa-
tion 2 assumes positive x is in front of the camera, positive y
is to the left. Remission values were not normalized and read
directly from raw scan data.



Figure 2a shows a sample of the relationship between these
features for three different surface classes: grass in green,
sidewalk in blue, and street in red. From [15], we expected
grass and street to be easily separable in this feature space, and
this was indeed the case. However, as illustrated in Figure 2a,
there was overlap between sidewalk and grass classes. Hence,
neither a straight-forward hyperplane classifier nor adaptive
thresholding as applied in [15] and [16] were appropriate in
this feature space for these three classes. Instead we used
a probabilistic approach to apply a stochastic label to an
observation in the feature space. We define a stochastic label
O on an observation as

Oit = {p(01ziz), ..., p(On|Zi )} 3)
where p(6;|z; ) is the probability of observing class j €
{1,...,J} conditioned on the observation z; ;.

A. Terrain Map

Our representation for the terrain map was a 2D occupancy
grid, where every grid cell held the probability for belonging
to each terrain class. We decomposed the global map into a
grid of cells M, where each map cell m;, € M contained a
stochastic label that was updated as observations (transformed
to the world frame) were made in that cell. For each new
observation, this label was updated according to the update
rule derived below.

We start with the standard Bayes Filter update rule under
the Markov assumption that the current observation, condi-
tioned on the observed class, is independent of any previous
observations

(Zi,twk,j )p(ak,j |Z1:4-1)

p
O i lz1) = “4)
POk 5121:1) (i |Z1:0-1)
By Bayes’ Law we have
P(Ok,j|2i,0)p(Zi )
z: 410, ;) = D T/ EATGE (5)
p(2i¢|0k,;) (01
Substituting this into Eq. 4 leads to
P(Ok.3|%,0)P (230 )P (O |21:4-1)
9 |21, _ s 5 ) 2 5 6)
p( /w| 1:t) POk, )P(Zi | Z1:4—1) (
and similarly
p(—|0k J|Z’l t)p(zi t)p(_‘gk J |Z1:t71)
—\9 iz = ; y 7 7 ' (7)
p( k»J| 1 t) p(_‘ek,j)p(ziﬂf Zl:t—l)
Taking the ratio of Eqs. 6 and 7 leads to
POk jl21:0) POk ;2i.0)p(Ok.j|21:0—1)P(—Ok ;) (8)

p(—Okjlz1:6) POk, j)D(—Ok j12i,0)P(—Ok j|Z1:0-1)

which, by taking its logarithm, can be tranformed to the log-
odds update formula

log (O j|z1:4) o POk j|Z1:4—1)
p(—0k,j|Z1:1) p(—0,j|z1:4-1)
log POnglzie) o pOkg) ©)
p(_‘ak,j|zi,t) p(_‘ak,j)

This derivation is examined in greater detail in [?]. Thus
to update a cell we only needed to calculate the cell prior
p(0 ;) and the inverse sensor model p(0y, ;|z;+). This update
was performed J times — once for each terrain class — for
every observation in the map cell, and the resulting updated
probabilities were finally normalized.

B. Discrete Stochastic Model

In the previous section, we showed that calculating the
inverse sensor model is necessary to update the occupancy
grid. In this section, we descibe the discrete probabilistic
model we used to estimate the probability p(0y, ;|zi.).

We constructed a probability mass function (PMF) to esti-
mate the probability that a new sensor measurement belongs
to each terrain class. The feature space was decomposed into
FE x F x G bins, with edges according to

Pe = pmzn"‘%(pmuw—pmzn) 620717--~7E
f

d)f = d)min + f(@bmaL - ¢min) f = Oa 1,..., F
g

Yg = Ymin + 6(7maac - "Ymin) g=0,1,..., G

Then b, ¢, was a bin in the feature space with edges p.,
o5, and 7,. Let T = {{z1,61},...,{zn,0n}} be a set of
N training samples, where each z,, is a real measurement in
the feature space generated by the 3D LIDAR, and each 6,, €
{1,2,...,J} is an index for the true class to which z,, belongs.
Elements of T" were assigned to a bin if the Euclidean distance
from the point to the midpoint of b, f, was minimal over all
bins.

The probability p(6y, ;|z;) was calculated as follows. Let the
set of training samples belonging to class j be

z; ={z,)0, =37} VneN VjelJ (10)

and z; . 4 C x; is the set of all training points belonging to
class j in bin b f 4. Then the un-normalized probability that
z; in bin b, r 4 belongs to class j is then

X )

p] — ‘ .]|}€af7g| +p30 v] c J (11)
;]

where p;, is an adjustable parameter that characterizes un-

sampled members of class j in the cell. We normalize the cell

probability to arrive at the final inverse sensor model
Dj

p(0ilziy) = ————— VjeJ (12)
J

p(014102i0) = 1= p(6;]20) (13)
j=1

where « is an adjustable parameter that characterizes unknown
classes in the cell.

An example of this stochastic model is depicted in Figure
2b. Probabilities are represented by color in the form of
a (red,green,blue) triplet, where the color components are
proportional to the respective class probabilities. This is es-
pecially evident at the border between sidewalk (blue) and
grass (green).
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Fig. 2: In the left figure, remission data is plotted as a function of scan distance p and scan angle ¢ for three different material classes: grass in green (top),
sidewalk in blue (middle) and street in red (bottom). The right figure is the stochastic model of this scan data, with bin color indicating class probability.

C. Generating the Sensor Model

Ground truth training data was collected using the IFM
sensors mounted to the wheelchair platform described in
Section III. The wheelchair was driven manually on several
different representative surfaces for each of the three surface
classes. Selected surfaces included old street, new street, old
sidewalk, new sidewalk, overgrown grass, and freshly cut
grass. To account for different lighting conditions, data was
collected on each surface in bright sunlight, shade, and at
night. To simplify the labeling process, the driven paths were
chosen to ensure that all ground points belonged to the same
class. Because sensor scans contain more than just ground
points, we segmented and extracted the ground plane using
RANSAC [19] with a planar model of the form

axr + by 4+ cz = 0. 14)

Outlier scan points were discarded, while inlier points were
labeled with the associated surface class. In cases where the
ground plane contained points from multiple classes, the scans
were labeled manually by plotting the points in the feature
space and visually estimating a boundary line between class
regions.

In total 10,374,473 ground truth points were labeled,
5,038,779 of which were generated by the left IFM, and
5,335,694 of which were generated by the right IFM. Of these,
1,230,642 points (11.9%) were labeled as street; 6,082,385
points (58.6%) were labeled as sidewalk; and 3,061,446 points
(29.5%) were labeled as grass. The number of points labeled
for each class is indicative of their frequency of occurrence in
the environment in which the data was collected; that is to say,
that sidewalk is the most prevalent class, followed by grass,
with street occurring relatively infrequently. These points were
used to generate two models (as described in Section IV-B)
respective to the IFM by which the points were generated.
For both models model, the following parameters were used:

|E| = 100, |F| = 53, |G| = 100, pjo = .05 Vj € {1,2,3},
and a = .1. These values were arrived at experimentally.

V. EXPERIMENTAL RESULTS
A. Benchmarking the Classifier

To assess the performance of the stochastic classifier, the
entire ground-truth dataset from Section IV-C was evaluated.
As an additional benchmark, a separate neural network clas-
sifier was also implemented for comparison purposes. Two
neural networks were trained, one for each sensor, with
data generated by that sensor in the following manner: A
feedforward backpropagation neural network was used with
a single hidden layer and 10 hidden neurons [20]. To train
the network, ground truth data was partitioned into two sets:
a training set and a testing set. From each class, 600,000
points were randomly selected for training using stratified
holdout, for a total of 1,800,000 points in the neural network
training set. To prevent overfitting the network to the training
set, the training set was partitioned to create a validation set
of data, which was evaluated continually during the training
process. Network training terminated when the mean square
error (MSE) of the validation set ceased decreasing. With the
two networks generated, the entire set of ground truth data was
classified by their respective models. The maximum likelihood
was evaluated on the neural network classification results, and
a confusion matrix was generated for each neural network.

The same subset of training points used to train the neural
network was also used to build two stochastic models as
detailed in Section IV-C, again one for each sensor. Again, the

Classifier Blacktop | Sidewalk | Grass All
Neural Network 99.8% 96.6% 94.5% | 96.4%
Stochastic Model 100.0% 97.8% 952% | 97.3%

Difference 0.2% 1.2% 0.7% 0.9%

TABLE I: Summary of benchmark classification performance.
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Fig. 3: (Left) Satellite image of the path network used for the sidewalk following experiments. The route for a single trial is highlighted. (Right) Terrain
classification results. The delineation between the sidewalk path (blue) and grass border (green) is clearly evident. Also the small black patch in the bottom
right of the figure indicates an unknown class, which was a mulch bed. The distance traveled by the SWS was 210 meters.

entire ground-truth dataset was classified with these models,
and maximum likelihood was used to apply a single label to
each point. Aggregate classification results for the stochastic
classifiers and the neural networks are shown at Table I as
a confusion matrix. In total, the neural network correctly
classified 96.5% of labeled data, while the stochastic approach
correctly classified 97.3% of training data.

These results indicated slightly better performance from the
stochastic classifier. More significantly, whereas the neural
network took considerable time to train, the stochastic model
can be generated in low-order polynomial time O(N?), where
d is the dimension of the feature space and IV is the size of the
training set. In our implementation, training the neural network
took over an hour on a quad core 3.0 GHz CPU with only a
tenth of the total dataset. Training on the entire dataset of 10
million points was not attempted due to hardware limitations.
In contrast, the stochastic model was generated in a fraction of
a second, even on the entire 10 million point dataset. Further,
updating a cell’s weight in the stochastic model was a simple
constant time operation. The net result is that the proposed
stochastic approach can support real-time terrain classification,
as well as online adaptation of the terrain models if required.

B. Terrain-based Sidewalk Following

Following benchmark testing, we evaluated the performance
of the proposed terrain classifier in a sidewalk following task.
In these experiments, the SWS was operated on sidewalk
lined with grass. This test configuration was chosen since it
represented a “worst case” pairing for our terrain set, as these
two classes exhibited overlap in the chosen feature space as
discussed in Section IV.

The SWS employed a two-dimensional occupancy grid as
its local map M with a cell resolution of 5 cm. Measurements
from the two IFM sensors were then processed separately.
Points associated with the ground plane in each scan were then
mapped to grid cells, and the respective probabilities of each
cell being associated with a given terrain class were updated

in accordance with Section IV. The prior probabilities for each
class were uniform across all map cells. These probabilities
were p(61) = .9, p(f2) = .6, p(03) = .8, and p(f4) = .2 for
street, sidewalk, grass, and unknown respectively, and were
arrived at experimentally.

For local planning, the SWS employed a sample-based
planner on the input space of its linear and angular velocities
(v,w). The planning loop ran at 5 Hz, and the planning
horizon was 2 seconds. The quality of the resulting trajectory
T was evaluated using a cost function of the form C(T, M) =
Copst + C,, + C,, where C,,s; was related to its distance to
obstacles, C,, was inversely proportional to v? to encourage
forward progress, and C,,, was proportional to |w]| to discourage
or encourage vehicle turning depending upon controller mode.

To effect the desired sidewalk following behavior, cells
classified as grass were modeled as obstacles by the local
planner. In initial experiments, this would often result in
no feasible trajectories being found as a single misclassified
sidewalk cell would map to an obstacle in M and block the
path. This would occur at times when even a single leaf was
present on the sidewalk. To mitigate this, a statistical outlier
filter was used and dramatically improved the homogeneity of
the classification result.

Three trials were subsequently conducted covering a dis-
tance of 675 meters. In each, the wheelchair was operated
in “supervisor” mode, where navigation was completely au-
tonomous unless interrupted by the user. In these experiments,
user interrupts were limited to left and right turn inputs to
the global planner so that the desired sidewalk route would
be followed. The path and segmentation results from a rep-
resentative trial are at Figure 3 (right). A significantly more
informative video of a different trial can also be viewed at
http://youtu.be/IRQLNKz1fQE. The net result was that using
terrain information alone, the SWS was able to reliably follow
the sidewalk with only higher level user intervention.

While we were initially satisfied with these results, subse-
quent testing identified environmental conditions that would



Fig. 4: (Left) Grass misclassified as sidewalk under bright sunlight conditions and with light colored sidewalk. No such errors were observed with the street
class (shown in red), as illustrated on the right. Black cells in the terrain map indicate an unknown class.

exhibit consistent misclassification between the grass and
sidewalk classes. This occurred under full sunlight with light
colored sidewalk. An example is is illustrated at Figure 4 (left),
with the misclassified regions circled in red. Note that the
shaded grass regions are classified correctly. The cause of the
misclassification appears to be associated with the IFM camera
auto-clipping the specified exposure times due to high scene
brightness, but this still needs to be verified. So while the IFM
still produces range measurements, reflectivity measurements
are corrupted. Note no such errors were observed with the
sidewalk/street class pairings due to the distance between the
two classes in the chosen feature space. This is illustrated in
Figure 4 (right).

VI. DISCUSSION

In this work, we investigated the potential for using in-
tensity based terrain classification to augment the perception
capabilities of a smart wheelchair system (SWS) operating
in an urban environment. In benchmark testing, the proposed
stochastic approach out-performed a neural network classifier
without the extensive training requirements. The net result is a
terrain classification approach suitable for real-time operations,
as well as online adaptation of the terrain models as required.

We demonstrated the potential utility of terrain classifi-
cation through a sidewalk following task. In a series of
experiments, the SWS was able to discriminate between grass
and sidewalk classes, and autonomously follow the sidewalk
over distances of hundreds of meters solely from the class
assignment. We acknowledge that these results are preliminary,
and have already identified instances of class overlap between
grass and sidewalk that would inhibit the sidewalk following
task under certain conditions (e.g., full sunlight on light
colored sidewalk). Regardless, we should emphasize that we
do not expect terrain classification alone to be sufficient for
navigation. Instead, we see the strength of this additional
semantic information in augmenting perception algorithms
that currently rely solely upon geometry. For example, we
have had success using iterative re-weighted least squares
(IRLS) for ground plane segmentation as opposed to the more
common RANSAC based approach [21]. In the least squares

formulation, weights assigned to the individual measurements
are a function of the distance to the ground plane recovered
in the previous time step. An improved IRLS formulation
might also employ the probabilities associated with terrain
classification into the weighting, so that points identified as
having a high probability of being sidewalk would be given
greater consideration over those associated with the grass and
street classes. We expect such an approach would provide a
more accurate reconstruction of the ground plane associated
with the sidewalk than otherwise possible using geometric
information alone. Other uses that leverage both the range
and intensity measurements provided by the 3D camera can
be imagined, and a stochastic formulation provides a natural
representation for merging this information.
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