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Abstract In this paper, we present a system level approach
to smart wheelchair system (SWS) navigation in urban envi-
ronments. The proposed SWS ecosystem has two primary
components: a mapping service which generates large-scale
landmark maps, and the SWS vehicle itself, which is a
client of the mapping service. The SWS prototype integrates
3D LIDAR/imaging systems which provide robust percep-
tion in unstructured, outdoor environments. It also leverages
these same sensors for map-based localization. In demon-
strating the efficacy of the approach, the SWS navigated
autonomously over a distance of more than 12 km in a
representative urban environment without once losing local-
ization, and without the use of GPS.

Keywords Service robots - Smart wheelchair system -
Large scale mapping - Navigating urban environments

1 Introduction

Smart wheelchair systems (SWS) have been an active
research area for over 30 years (Simpson 2005). The spec-
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trum of work has ranged from component level safety
sensors, to assistive controllers for steering, to completely
autonomous solutions. This research interest is driven in
part by their potential for improving the independence and
quality-of-life of persons with disabilitics and the clderly.
Enabling mobility can allow individuals to participate more
fully in basic activities such as employment, education, recre-
ation, worship, commerce and other activities of community
life that most people take for granted. An additional positive
side-effect of increased independence is significant cost sav-
ings in healthcare and long-term care (Perry 2002). While
the large majority of research to date has focused on indoor
operations, there is growing interest in extending SW'S capa-
bilities to outdoor environments (Iric and Tomono 2012;
Yokozuka et al. 2012).

Our own approach to outdoor navigation for SWS was
inspired by our work with autonomous automobiles (Bohren
et al. 2008). By using a route network associated with a
geographic coordinate system (e.g., latitude and longitude,
UTM, etc.), users merely specify a desired goal location and
the automobile navigates there autonomously. This is made
possible in large-part through the availability of accurate
pose estimates (typically from high-performance GPS/INS
systems), and exteroceptive sensors which provide rich three-
dimensional (3D) data (e.g., Velodyne HDL-64E LIDAR)
for robust perception in unstructured environments. Lever-
aging these sensor technologies, vehicles such as Google’s
driverless car have driven 100,000 s of miles on public roads
demonstrating performance at least as good as their human
counterparts (Simonite 2013).

In comparison, the progress in SWS navigation in out-
door, unstructured environments has been surprisingly slow.
Part of this can be attributed to significantly less commercial
interest. The electric powered wheelchair (EPW) market is
far smaller, and insurance providers (e.g., Medicare) are pri-
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Fig. 1 The Lehigh University smart wheelchair system (SWS) proto-
type

marily concerned with providing mobility to users indoors.
However, another significant hurdle is the relative vehicle
cost. Automobiles are an order of magnitude more expensive
than EPW systems. While integrating a high-performance
GPS/INS system or LIDAR costing $10,000 s USD each
might be possible on a luxury automobile, such systems are
completely infeasible for use on a commercial SWS. We
instead take a different approach (Fig. 1).

First, our emphasis is on navigation in urban environ-
ments. This is motivated by the observation that over 80 %
of the U.S. population resides in urban areas (United Nations
Department of Economic and Social Affairs 2015). While the
availability of GPS measurements in urban areas can typ-
ically be assumed, multi-path errors from buildings, trees,
etc., can significantly compromise its accuracy. However,
we further observe that these same structures can be used as
landmark features to yield highly accurate relative position
estimates. This is illustrated in a simple experiment shown
at Fig 2. In this example, the SWS was manually driven
around an 80 m triangular-shaped sidewalk loop while log-
ging GPS data. Portions of the path were lined with large
trees. As a result, a large section of the path had significant
position estimate errors due to multi-path. This is shown in
the left satellite image. During the experiment, an extended
Kalman filter (EKF) based SLAM algorithm was also exe-
cuted. It took its initial pose from the GPS, but all subsequent
pose estimates were derived from pole-like features (in this
case, the trees) that were segmented by a LIDAR system.
The resulting pose estimates are dramatically improved, as
shown in the right satellite image. This motivates the use
of feature-based SLAM algorithms to compensate for GPS
errors. Furthermore, as with indoor paradigms, a priori maps
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Fig. 2 A demonstration of the ineffectiveness of GPS as method of
sidewalk level localization. The GPS signal is overlaid on satellite
imagery while driving around the friangular-shaped path (left). The
path derived from SLAM using trees as landmarks (right)

embedding accurate landmark locations have the potential to
significantly improve localization performance and robust-
ness in urban environments.

To this end, we employ a holistic approach to SWS navi-
gation in urban environments. The proposed SWS Ecosystem
has two primary components. The first is a mapping service
which generates accurate, large-scale landmark maps and an
associated route network that are made available through a
cloud interface. The second is the SWS itself, which is a
client of the mapping service. The SWS prototype integrates
3D LIDAR/imaging systems which provide robust percep-
tion in unstructured, outdoor environments. It also leverages
these same sensors to perform map-based localization with a
demonstrated accuracy at the decimeter level. The net result
is an SWS platform with perception and localization systems
suitable for autonomous navigation in urban environments.
Furthermore, these capabilities are achieved at a monetary
cost not prohibitive for the EPW consumer space.

The results presented herein extend our previous work in
three significant ways. First, we developed and integrated
a 3D LIDAR into the SWS prototype. This improved the
safety and effectiveness of the system by enabling robust
detection of both 3D landmarks and obstacles. Second, we
developed a new vehicle for mapping at the sidewalk level.
Using this, we created higher resolution and larger scale
maps (three times what was completed in the past), and also
addressed the significant issue of sidewalk occlusion that we
observed previously. Finally—and in part due to these first
two improvements—we have demonstrated autonomy over
distances exceeding 12 km. This represents an order of mag-
nitude improvement over our previous work.

2 Related work

The proposed SWS Ecosystem has strong ties to research in
smart wheelchair systems, large-scale urban mapping, and
autonomous navigation of service robots in urban environ-
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ments. While a complete survey of these topics is outside the
scope of this document, we have tried to highlight at least the
most relevant and recent works in each of these areas.

SWS have been an active research area since the carly
1980s. Our own work in the SWS space spans over a decade,
and includes (Gao et al. 2010, 2008, 2007; Montella et al.
2014). A survey of the field (as of August 2005) can be found
in (Simpson 2005). More recent projects of note include
the MIT Intelligent Wheelchair Project (Doshi and Roy
2007), the goal of which is to develop a voice-commanded
autonomous wheelchair intended for use in indoor environ-
ments. The home, lift, position, and rehabilitation (HLPR)
Chair (Bostelman and Albus 2008) developed by NIST is a
special-purpose assistive mobility device to provide indepen-
dent patient mobility for indoor tasks, such as moving to and
placing a person on a chair or bed. HLPR has demonstrated
obstacle detection and navigation indoors with promising
results. The Personal Mobility and Manipulation Appliance
(PerMMA) (Cooper et al. 2012) is being developed at the
University of Pittsburgh and Carnegie Mellon University
with the objective of combining manipulation and mobility
assistance in support of complete independence for its users.
The system employs two robotic arms, and has demonstrated
object manipulation tasks such as retrieving a drink from a
refrigerator.

In contrast to these other efforts, our work has been cen-
tered around outdoor systems. Our most current research,
and the focus of this paper, emphasizes robust navigation
in unstructured outdoor environments. Developing robust
robotics solutions suitable for use outdoors is a significant
challenge compared to indoor environments. The scale is
much larger, illumination levels vary from strong sunlight to
near complete darkness, the environment is far less struc-
tured, environmental conditions can change quickly and
dramatically, and simplifying assumptions such as a level
ground plane are not reliable. Furthermore, operations at the
sidewalk level require localization performance beyond the
bounds of what traditional GPS can provide. Since 2012, sev-
eral other research groups have turned their sights towards
outdoor wheelchair systems as well. Yokozuka et al. (2012)
employ an approach similar to ours in that they actuate a
2D LIDAR to produce 3D point clouds of the environment.
However, they use a 3D voxel grid as the map representation
whereas we use a feature-based map to operate in similar
outdoor urban environments. They report that their system
has autonomously operated for at least two missions of over
a kilometer during the Tsukuba Challenge whereas our sys-
tem has performed autonomously for over 10 km. Also, their
approach to obstacle avoidance uses 2D information (the
localization component uses the 3D data) which is not as
robust as the 3D information used in our approach.

The work by Irie and Tomono (2012) also has a wheel-
chair navigating an urban environment. Their approach uses

maps that are already available and annotated for human use,
say from Google maps, and use those to localize in urban
environments. Their approach assumes that a grid map is
available where grid cells have been labeled as belonging
to a roadway, sidewalk, or building and localization is done
by detecting the boundaries between these types of regions
using stereo vision. This is similar to our approach in that 3D
perception is used and that common urban features are used
for localization. Key differences are in the chosen sensing
modality and map representation. We deliberately ruled out
a vision-based approach due to robustness concerns. They
demonstrated successful position tracking on a 150 m side-
walk course whereas our system demonstrated successful
autonomous navigation (which assumes successful position
tracking) of an order of magnitude more distance. Also, their
assumption is that annotated maps of the environment will
someday exist for easy consumption, but in this work every
map had to be hand labeled. In this respect, they still require
a mapping procedure.

One inspiration for our mapping approach is the Google
mapping trike (Anguelov et al. 2010), which is used in areas
where their mapping cars cannot traverse. Their platform
has a high-end sensor suite with multiple sensing modalities
whereas ours is a relatively low-cost platform. Our mapping
approach reduces a 3D representation of the environment
to a 2D planar map of features for the SWS client. Chong
et al. (2013) use a method whereby a 3D point cloud of the
environment is created using a push broom mounting of a
2D LIDAR. They then project points of interest from the 3D
point cloud to a 2D plane to create a synthetic 2D LIDAR
scan that is invariant to roll and pitch of the mobile platform.
They report successful localization on a 1.5 km route with
quantitative performance similar to ours. Their localization
approach uses a 2D occupancy grid as a map representation
whereas we use a feature based representation. They also
demonstrate two successful autonomous missions on two
shorter sub-routes. We have demonstrated both short term
and long term autonomy in fifteen autonomous missions.

Mapping at the sidewalk level requires a sufficiently
accurate six degree of freedom pose estimate in a global
coordinate frame in GPS compromised areas. Baldwin and
Newman (2012) use a push-broom style 2D LIDAR with the
goal of providing an accurate pose estimate by using proba-
bilistic methods on small swaths of aggregated push-broom
scans. They also report better accuracy with their method
in a GPS compromised outdoor environment than a refer-
ence high-performance GPS/INS system. Their localization
approach uses previously seen swathes of the environment
represented as point clouds. During operation of the local-
ization system, the currently observed swathe is matched to
the most likely swathe observed in a prior experience and the
pose is estimated based on that match. They report successful
localization results on 26 km of roadway, but have not demon-
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strated autonomous navigation. We have not autonomously
operated that amount of distance, but emphasize that we are
operating at human scale, rather than road vehicle scale.

Lategahn et al. (2013) map urban environments using pre-
dominately a stereo camera and IMU. Although, they use
a GPS measurement to initialize the pose estimate. Similar
to our work, they use 3D features as landmarks. However,
their localization approach uses only a monocular camera
and IMU in conjunction with the landmark map to provide an
accurate 6 degree of freedom pose estimation. Our client sys-
tem operates under a 3 degree of freedom pose assumption.
Their system demonstrated a mean localization performance
accuracy of 10 cm on a 10 km mapped urban environment.
Our mapped environment is smaller, but our localization
results are similar. Furthermore, while their work focuses
on localization, our SWS Ecosystem offers a more complete
solution for autonomous navigation.

Finally, an important aspect to navigation at the sidewalk
level is the ability to handle dynamic obstacles in the envi-
ronment such as pedestrians. Kummerle et al. (2013) present
a tour guide robot that autonomously navigated through a
crowded 3.3 km urban route. They use a grid map representa-
tion of the environment and a particle filter based approach to
localization. They demonstrate qualitatively successful local-
ization results whereas we provide a quantitative analysis of
localization accuracy. Their approach relies on 2D informa-
tion for localization and dynamic obstacle avoidance. While
we are also concerned with dynamic obstacles, the emphasis
of our work is in localization and mapping. Robustly han-
dling dynamic obstacles is outside the scope of this work.
However, our system utilizes 3D information for obstacle
avoidance and can potentially perform better when there are
low lying dynamic obstacles, such as dogs, which their sys-
tem had trouble with.

3 SWS ecosystem overview

As alluded to earlier, the key for our SWS to navigate reli-
ably in an urban environment is having an accurate landmark
map and route network. The landmark map consists of the
absolute locations of landmark features (in this case, pole-
like features) and is used for localization purposes. The route
network is used to indicate wheelchair accessible paths with
respect to the landmarks and is used for path planning.

We approach the problem from a client service standpoint.
Hence, our ecosystem is composed of two major systems:
the SWS acting as a consumer of landmark maps and route
networks, and a service platform used to generate landmark
maps and route networks, and to make them available to
SWS clients. The envisioned approach is to use a sidewalk-
level mapping vehicle with high quality sensing equipment
to enable a high fidelity 3D reconstruction of the environ-
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ment. Then, the 3D reconstruction could be reduced to salient
landmark features and their absolute locations with respect
to a global coordinate frame. Route networks could then be
generated via the service mapping platform or by manually
driving the client SWS on safe paths in a learning phase
before autonomous operation as in Gao et al. (2010). These
landmark maps would then reside in the cloud, and the SWS
would download the landmark map and route network based
on its location and the desired goal locations chosen by the
operator.

In this paper, we describe a proof of concept implementa-
tion of the envisioned system. The mapping service platform
and the map generation process is outlined in Sect. 4. The
client SWS platform and methods it uses to perceive and
navigate the environment are described in Sect. 5. Following
the specifics of the service and client components, results of
using the system in practice are discussed in Sect. 6.

4 Server side map generation

This section details the service component tasked with gen-
crating and providing the landmark map and route network.
The map representation used by the system is feature-based,
which was motivated by the need for the SWS to localize in
a GPS compromised environment utilizing a relatively low
cost sensor suite. The global feature map was generated by
capturing and synthesizing a dense point cloud representation
of the environment. Urban environments offer a plethora of
features for tracking. In this work, we focused on pole-like
features—herein referred to simply as pole features—such
as parking meters, lamp posts, trees, ctc. Examples of typ-
ical pole features in our map are shown in Fig. 3. In our
previous work (Montella et al. 2014), we employed a street
level mapping platform (a car) that had the advantage of uti-
lizing a high-end OXTS RT-3050 GPS/INS system which
provided accurate positional information. However, a short-
coming with mapping from the street was that features at the
sidewalk level could be occluded by obstacles such as parked
cars. This led to the construction of a sidewalk level mapping
platform.

Fig. 3 Some example pole features. From left to right a street sign,
parking meter, lamp post, and fire hydrant
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Fig. 4 The Mapping Trike
platform (left) . A rear view of
the Mapping Trike with
mounting positions of the
LIDARSs indicated (center).
Close up pictures of the GPS
antenna, wheel encoder, and the
Microstrain 3DM-GX3 IMU

(right)

4.1 The Mapping Trike platform

Taking inspiration from Google’s mapping efforts (Anguelov
et al. 2010), the Mapping Trike platform was built upon a
commercial tricycle augmented with a sensor suite, depicted
in Fig. 4. A Microstrain 3DM-GX3-45 inertial measurement
unit (IMU) with GPS antenna and two 4096 cycles per revo-
Iution (CPR) resolution encoders were used to provide pose
estimation. Point data from two side-facing LIDARS (SICK
LMS291-S14) and one rear-facing LIDAR (SICK LMS291-
S05) were used to detect landmark features. The Mapping
Trike was driven manually around an area of interest while
logging data from all of its sensors. Data were then post-
processed to synthesize the landmark map.

Synthesizing the map takes place in two main stages. The
initialization stage creates a high fidelity 3D reconstruction
of the environment via the side-facing LIDARS. This recon-
struction is then reduced to landmark features that have an
associated position and covariance. These landmark statis-
tics serve as an initial estimate of the landmark map, which
is later refined to correct positional errors of the landmarks.

4.2 Mapping stage 1: initialization

The initial map is generated in three main stages: pose estima-
tion, landmark segmentation, and map synthesis. A data-flow
diagram for the map initialization phase is depicted above the
dashed line in Fig. 5.

4.2.1 Pose estimation

The localization module (Sect. 5.4) of the SWS works under
the assumption that the landmark map is a 2D plane. Hence,
the mapping goal is to register the landmarks to a consistent
2D global coordinate frame that is sufficiently planar in local
neighborhoods. In our case, we use the Universal Transverse
Mercator (UTM) coordinate system, which maps positions

Map Initialization

(MU ) [ Encoder ] | SideLIDAR ]
N ¥ T

[ GPS H Kalman Filter H Pole Segmentation |

v
Landmark Map v1.0 e

Map Refinement
(MU ] [ Encoder ] [ RearLDAR |

[ GPS H Kalman Filterl | Pole Segmentation |
v L 2

je—

[ EKF SLAM
v
Landmark Map v2.0

Fig. 5 A block diagram representing the data flow of the mapping
process. The section above the dashed line represents the map initial-
ization phase and the section below the dashed line represents the map
refinement phase

on the globe to a 2D Cartesian coordinate frame. To achieve
this goal, the estimated pose of the trike with respect to the
UTM frame must be accurate to within the operating toler-
ances of the SWS. The 3DM-GX3-45 has an integrated an on-
board GPS, but its accuracy was insufficient to accurately reg-
ister the trike to the UTM frame even when fused with inertial
measurements from the IMU. Our solution was to integrate
feedback from the wheel encoders and incorporate the kine-
matics of the trike into an EKF. Thus, the trike pose was esti-
mated by using the vehicle kinematics as the predictive step,
and fusing the GPS and inertial measurements for the cor-
rective step. We used a predictive motion model of the form:

X X cosacosB O
y y sinacos B0
_ . Ap
X = |z =zl + sin 8 0 (A)’
a o 0 1 “
BJ 1 B/ 0 0

ey
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where x denotes the state vector consisting of the Cartesian
coordinates (x, v, z) and the yaw and pitch angles («, ), 4y
and A, were the linear and angular displacements over some
small time step derived from the encoders. The k subscript
denotes a time step and the superscript ~ denotes the pre-
diction of the state and covariance after the motion update.
The roll angle was not tracked because the effect of roll was
minimal on flat sidewalks, but tracking the pitch was crucial
as small changes in pitch could distort the projection of the
rear-facing LIDAR data. For example, the map in Sect. 6 has
hills with a grade of approximately 8.5 %.

For the purposes of the EKF, the covariance P was updated
as:

Py = JPd] + 1n QI )

where J; was the Jacobian with respect to the state defined
as:

1 0 0 —Ajsinacosfp —Ajcosasinf

0 1 0 Ajcosecosff —A;sinwsingf
Js=10 0 1 0 Ajcos B R

0 0 O 1 0

0 0 O 0 1

3)

Jm was the Jacobian with respect to the linear and angular
displacement defined as:

cosacospB O
sinacosf 0

I = sin 0], (@)
0 1
0 0

and Q is additive Gaussian noise in the linear and angular
displacements.

The 3DM-GX3-45 streams the GPS data and IMU data
at different rates, 4 and 100 Hz respectively. So, in our EKF
formulation each of these data streams has a separate mea-
surement update. The GPS measurement update is computed
with the following sequence of equations:

Kex = P H] (HyP H] + Ry(k)™!
Xet1 = X+ Ko a(zg — Hexp ) &)
Pry1 = Ir- KgHg)Pk__H,

where z, is the GPS measurement represented as a UTM
coordinate, x is the state vector, and H, is a projection matrix
to extract the x and y Cartesian coordinates from the state
vector defined as:
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Ry (k) is a covariance matrix that represents the uncertainty
of the GPS measurement at time step k, I is the identity
matrix, X;+1 and Py are the corrected state and covariance
respectively. The IMU itself does some on-board filtering and
the covariance of the GPS measurement can be requested.
This is the value used for R, (k).

Similarly, the gyro measurement update was computed
with the sequence of equations:

Kok = P HY (HoPC (HY + Ra(k))™!

Xk+1 = Xk_-l-l + Kok (zqg — H”'Xk_-l-l) @)

Pk+l = (I - Ka,kHa)Pk__l_la
where z,, is a gyro measurement of the form [, B 17, and H,
is a projection matrix to extract the yaw and pitch from the
state vector defined as:

00010
H“:(ooom)' ®

R, (k) is a covariance matrix that represents the uncertainty
of the gyro measurement at time k, I is the identity matrix
and xg4| and P41 are the corrected state and covariance
respectively.

4.2.2 Landmark segmentation

The EKF described above provided an acceptable pose esti-
mate for the mapping trike. The next step was to register the
LIDAR scans to acommon coordinate frame (in our case, the
Standard UTM frame), as we are relying upon the motion of
the trike to build the 3D reconstruction of the sidewalk scene
via 2D laser scans. Because of this, in our data collection we
aimed for a speed of approximately 1 m/s. In conjunction
with the LMS291 LIDAR scan rate of 75 Hz, this gave us a
vertical scan for each 1-2 cm of distance traveled.

Once we had a sufficiently dense set of LIDAR scans reg-
istered to a common frame, we segmented the pole features
by aggregating subsequent 2D scans into a 3D point cloud.
The scans were aggregated in a sliding window fashion. The
first n scans made up the first point cloud and subsequent
point clouds began at the middle scan of the previous point
cloud. The reason for this overlap was that a landmark could
be missed if it straddles the boundary of the two windows.
Additional bookkeeping was done to eliminate the duplicate
landmarks in the overlapping regions. For each window, the
points corresponding to the ground plane were removed using
aRANSAC procedure. The remaining points were then clus-
tered based on the Euclidean distance to neighboring points.
The maximal intra-cluster distance was set to 10 cm. An
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Fig. 6 Pole segmentation of a parking meter from the dense 3D recon-
struction of a side facing SICK LIDAR

Fig. 7 An example of a lamp post that would be clustered into two
components due to a section of invalid measurements

example of the segmentation of a parking meter from a win-
dow containing 100 scans is shown in Fig. 6.
Unfortunately, some features were clustered into several
disjoint clusters using this approach. This was most likely
to occur when observing lamp posts due to the low albedo
surface. An example of a lamp post that would be improperly
segmented is shown in Fig. 7. Based on the observation that
vertical features are the focus of our landmark segmentation,
we performed a cluster merging step to combine clusters
that were likely to belong to the same vertical object. The
centroids of each cluster were projected to the x — y plane. If
the Euclidean distance between two centroids was less than
20 cm, the clusters were merged into a single cluster. This

merging phase significantly increased the accuracy of the
entire segmentation process.

The next step was to validate that a cluster was a pole
feature by passing some validation gates. The approach of
fitting a cylindrical model, while intuitive was not very effec-
tive. This was especially true for features like street signs
and parking meters which lacked uniformity. That being the
case, we validated a cluster’s status as a pole by first per-
forming a spectral decomposition of the covariance matrix
of its data points. This gave us information that was invariant
to the coordinate system in which the data was measured.
The eigenvector associated with the largest eigenvalue ig
was compared against the vector [0, 0, 1nr (corresponding
to the gravity vector). If the angle between them was out-
side some tolerance, the cluster was rejected as a landmark;
a cluster passing this validation gate was assumed to be a tall
vertical object. We further examined the aspect ratio of the
cluster. Since the eigenvalues correspond to the variances in
the principal directions and the largest direction was already
determined to be vertical, several ratios of the eigenvalues
were tested: Ao /A3 ~ 1 to validate that the width and depth
were similar and A1/ min(X;, A3) > 2 to validate the object
was at least twice as tall as it was wide. Only after passing
these gates was a cluster considered a candidate landmark.

4.2.3 Landmark map v1.0

Ultimately, the landmarks associated with each cluster
needed to be transformed to 2D UTM coordinates. The rea-
son for this is that the client SWS is not assumed to have the
sensing capability to track its position in R®. As such, the
trike pose and centroid of each cluster were transformed to
UTM coordinates and each landmark cluster was reduced to
a feature vector of the form [p, ¢, s]7 where p and ¢ were
the range and bearing to the transformed landmark’s centroid
with respect to the trike’s transformed pose at which the land-
mark was detected and s was a signature for the landmark
(in our case the radius of the pole). The signature value aids
in data association in the map refinement step (Sect. 4.3) and
was computed by finding the bounding box of the landmark
cluster’s data points and returning min(width, depth)/2 as
the radius.

For our landmark map, we wish to embed both the mean
position and covariance of each landmark in the UTM frame.
Using the 2D projection of the trike’s pose estimate, denoted
asx = [x,y, H]T, we converted the landmarks to the UTM
frame as follows:

(1Y _ [(x+pcos(¢+0)
L= (fz) - (y+psin(¢+9))’ ®)

where 17, denotes the mean location of a landmark. To com-
pute the covariance we need to transform the noise model of
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the LIDAR to Cartesian coordinates. Note that the variance
of the signature is not considered here as it does not depend
on the position. The noise model is denoted as:

(o, O
¢= (0 %) ’
and is linearized with the Jacobian of p; with respect to p
and ¢, defined as:

(10)

_ (cos(¢+9) (an

—psin(¢ + 6)
sin(¢p + 0) ’

pcos(op+0)

However, we also need to propagate the uncertainty in the
trike’s pose into the uncertainty in the landmark’s position.
The linearization is performed using the Jacobian of j with
respect to x, y, and z, defined as:

(1 0 —psin(¢p +6)
Hi = (0 1 pcos(p+6) )" a2
The covariance for a landmark’s position is then
YL =HZH' + HyoXgH). (13)

The initial map estimate is the set of means and covari-
ances for each landmark feature denoted

My = (L1, Xr1), - (RLN, ZLN)) (14)

where N is the number of landmarks.
4.3 Mapping stage 2: refinement

In our previous work (Gao et al. 2010), the mapping vehi-
cle employed a high performance OXTS RT-3050 GPS/INS
system for pose estimation. Despite this luxury, the residual
errors in initial landmark positions were large enough to make
SWS localization impossible. As a result, a second mapping
stage was required to refine the landmark positions. Further-
more, the 3DM-GX3-45 used on the Mapping Trike lacks
the accuracy of the OXTS RT-3050, and so a map refinement
step was expected.

The map refinement stage used an EKF simultaneous
localization and mapping (SLAM) approach modified to use
M1 as an input. While the map initialization stage was per-
formed off-line using the trike’s side-facing LIDARs, the
map refinement stage was performed on-line using trike’s
rear-facing LIDAR. Extracting poles from the rear-facing
LIDAR was done by first registering the laser scan to the
trike’s coordinate frame. The point data in the scan were
then clustered based on the Euclidean distance of neighbor-
ing points; the maximal intra-cluster distance was set to 10
cm. This value was chosen to capture pole features at a range

@ Springer

of approximately 8 m. Any cluster of less than four points
was rejected as a possible landmark. A circle model was then
fit to each remaining cluster using RANSAC (Fischler and
Bolles 1981) and the model parameters were refined using a
least squares fit to the inliers. Any cluster that had less than
90 % inliers (a measure of model fit) or a fitted circle radius
greater than 40 cm (none of the landmarks have a radius this
large) was rejected as a landmark. Each accepted landmark
was then putinto the [p., ¢, 5|7 form by converting the center
point of the fitted circle to polar coordinates with respect to
the trike. The radius of the circle was used for the signature
s. Note that the center of the fitted circle was used rather than
the centroid of the cluster’s data as it was a better approx-
imation of the landmark’s actual location when seen from
different viewing angles.

As in a typical EKF SLAM implementation, the vehicle
pose and map locations were represented as a Gaussian with
mean vector 4 = [x, my, ..., mn]T wherex = (x, y, ) was
the trike’s pose and m; = (x;, y;, s;) was the h Jandmark’s
position and signature, and covariance, defined as:

Exx Z‘xml Exinn
Zmlx Emlml Emlmn

Y = . . . ; (15)
2‘m,,)r Zm,lml e Zmnmn

where X' is a block matrix and each block corresponds to the
covariance of the pose X'« , the pose with respect to landmark
X ym;» or the covariance of a landmark X, .

The first step to our map refinement is to pre-process
M, by tagging a small number of specific landmarks with
accurate position information using satellite imagery. This
information provides known correspondences for these fea-
tures and aids in loop closure. We found this necessary, as
the loops we are considering are on the order of a kilometer
in length. The SLAM measurement update step computes
the Mahalanobis distance from an observation to cach land-
mark in My, as well as to each landmark in the refined map
maintained by the EKF denoted as M,,. The maximum like-
lihood correspondence (MLC) (Thrun et al. 2005) is selected
and the update has three possible outcomes:

(1) The MLC is below some threshold and the observation
is discarded.

(2) The MLC is associated with a landmark in M, and the
EKF is updated normally.

(3) The MLC is associated with a landmark in M,,; and the
landmark feature is removed from M| and added to M ;.
Additionally, if the landmark has associated satellite data,
then that position is used when adding the landmark to
M.
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Fig. 8 A comparison of an initial landmark map to the refined map.
The trike started on the left with an acceptable GPS position estimate
and traveled to the right up a grade of 8.5%. The red triangles indi-
cate the landmarks in M,,| and the yellow circles indicate the landmarks

The refined landmark map v2.0 is the result of the EKF
SLAM procedure. Figure 8 shows the difference between one
instance of the initial map compared to the refined map on
Webster Street. The trike started on the left with an accept-
able GPS position estimate and traveled to the right up a
grade of approximately 8.5 %. The red triangles indicate the
landmarks in M, and the yellow circles indicate the land-
marks in M. A single landmark at each corner was tagged
with satellite imagery positional information to act as known
correspondences.

4.4 Route network generation

The SWS uses a route network for path planning containing
information about wheelchair accessible paths with respect
to the landmark map. The route network is modeled as a
graph G(V, E) where waypoints correspond to the vertices
v; € V and the edges ¢;; € E correspond to directed edges
connecting pairs of waypoints. Each edge also has semantic
information associated with it: a speed limit, a stop condition,
and a weight. The speed limit is used to constrain the local
path planner (Sect. 5.5.2) to a maximum speed in areas of
the map where high speed traversal could be unsafe. The
stop condition is used in areas of the map, such as street
crossings, where the operator of the SWS must determine
when it is safe to cross. The edge weight is used by the global
planner to search for paths that minimize the expected time
of arrival.

The route network was constructed by first sampling the
trike poses as corrected by the map refinement step. The
trike was driven on acceptable wheelchair accessible paths
in order to ensure that the sampled path is valid for the SWS.

in My,. A landmark at each corner was tagged with satellite imagery
positional information to act as known correspondences (Color figure
online)

After the initial route network was constructed, semantic
information associated with the edges was added manually.
While not fully automated, the associated workload is not
too cumbersome. For example, the route network used in our
experiments (Sect. 6) only had to have the six street crossings
annotated by hand.

5 The smart wheelchair system (SWS) client

This section describes the operation of the SWS under the
assumption that the landmark map and route network are
available. The SWS software has three major components:
perception, localization, and navigation. The perception
component of the SWS has two primary tasks: pole feature
segmentation for localization (Sect. 5.4), and populating a
cost map for obstacle avoidance (Sect. 5.5.1). The local-
ization component maintains an estimate of the SWS with
respect to the landmark map by utilizing the output of the
pole feature detection process. Finally, the navigation com-
ponent (Sect. 6.3) uses the route network for global planning
and the cost map (populated via the 3D sensors) to generate
local trajectories. A detailed description of each component,
as well as the SWS hardware platform, now follows.

5.1 The SWS platform

The SWS used in this work is pictured in Fig. 9. It is
an Invacare M91 Pronto that integrates the FDA approved
motion control module (MCM) developed under our previ-
ous work (Gao et al. 2008). The MCM provides a seamless
interface for regulating SWS linear and angular velocities.
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Fig. 9 The SWS prototype with the fields of view of the actuated
LIDAR (blue) and each 3D camera (orange) highlighted. A profile
view (left) and a top down view of the respective sensors’ fields of
view (right) (Color figure online)

Proprioceptive sensing includes high resolution quadrature
encoders (4096 CPR) and a Microstrain 3DM-GX1 IMU.
The latter is used to enhance the odometry performance by
providing gyro corrections. Exteroceptive sensors include
two IFM O3D200 3D cameras and an actuated Hokuyo
UTM-30LX 2D LIDAR (described in detail in Sect. 5.1.2).
These provide the necessary 3D sensing for robust obstacle
detection and landmark segmentation. The total cost of all
sensors is <$10K USD in quantities of one.

The software was developed using the Robot Operating
System (ROS) (Quigley et al. 2009) framework and mod-
ularized based on the message passing paradigm used by
ROS. Additionally, the Point Cloud Library (PCL) (Rusu and
Cousins 2011) was leveraged for processing point cloud data
from the exterioceptive sensors. The computational process-
ing for the software components was performed by a laptop
with an Intel Core 17-2760QM 2.4GHZ processor and 4 GiB
of RAM.

5.1.1 IFM O3D200

The primary role of the IFM O3D200 3D cameras was to
detect obstacles in the environment and propagate that infor-
mation to the local map (Sect. 5.5.1). While the sensor has
its limitations (an effective range of ~6 m, a resolution of
48 x 60 pixels, a field of view of 30° x 40°, and a rela-
tively low frame rate of ~7 Hz), it has one critical capability.
Specifically, the O3D200 can provide 3D measurements in
outdoor conditions, including bright sunlight. This is some-
thing that lower-cost “Kinect-based” sensors are incapable
of doing. It is also reasonably affordable, costing ~$1500
USD. In our previous work (Montella et al. 2014) the 3D
camera was crucial for robust obstacle detection as it was the
only 3D sensing modality used. The current SWS integrates
a second 3D sensing modality (Sect. 5.1.2), but the O3D200
is still useful for ground plane segmentation and to cover the
near field and low-lying blind spots. In addition, to compen-
sate for the limited field of view, two O3D200 cameras are
used. Figure 9 shows the mounting positions and depicts the
vertical and horizontal fields of view for each sensor.
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5.1.2 Actuated 3D LIDAR

The SWS features an actuated Hokuyo UTM-30LX LIDAR,
herein referred to as the 3D Hokuyo. Although it was also
used for obstacle detection, the primary role of the 3D
Hokuyo was landmark segmentation. Our motivation for
actuation was due to robustness concerns in our previous
work (Montella et al. 2014). Specifically, localization with
the UTM-30LX was done using 2D information, but the SWS
operates in a 3D environment. While this was sufficient for
demonstration purposes, robust segmentation of 3D land-
marks requires a 3D sensor. The 3D Hokuyo was actuated
with a Dynamixel AX-12A servo which was encased in a
custom 3D printed enclosure. The 3D Hokuyo is depicted in
the left image of Fig. 10. The entire 3D Hokuyo system has
a small footprint, and is comparable in size to the standard
joystick controller on the right arm of the SWS. The actuated
behavior was to simply nod up and down over a limited angu-
lar range. The Dynamixel servo is well suited for this task,
as it can be controlled by explicitly setting angle commands
and polled for its current angle position.

The task of the 3D Hokuyo was to aggregate the 2D laser
scans from one angular set point to the next (a sweep either up
or down), register each scan to a common odometric coor-
dinate frame to account for SWS motion, and then report
the aggregation as a 3D point cloud. The design target for
the 3D Hokuyo was to stream aggregated 3D scans at 5 Hz,
as this was the frequency of the motion planner’s control
loop. A constraint on this goal was that the vertical angular
resolution had to be sufficiently small in order to effectively
segment landmarks. The free parameters (the choice of angu-
lar set points) were empirically determined to be +5° from
the neutral position (the LIDAR scan parallel to the ground).
This choice gave us a field of view of 270° x 10°.

Figure 10 shows histograms of the salient operating char-
acteristics of the actuated LIDAR in operation. Due to factors
such as inertia, the scan angles in a sweep, the number of
scans in a sweep, and the amount of time a sweep takes are
not deterministic. The results show that an average sweep of
the actuated LIDAR contains approximately 7.5 laser scans.
As the UTM-30LX scans at 40 Hz, the effective update rate
of the 3D Hokuyo was 5.35 Hz, which was sufficiently close
to our design target of 5 Hz. Figure 11 shows a visualization
of the 3D point cloud data from one sweep.

5.2 Ground plane tracking

Reliable obstacle detection and mapping requires the local
ground plane to be tracked. For the SWS, this is accom-
plished using the O3D200 3D cameras and employing an
iterative reweighted least squares (IRLS) approach. IRLS
has advantages over a traditional RANSAC approach in that
it integrates both temporal filtering as well as regularization
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Fig. 10 The actuated LIDAR mounted on the SWS (lefr). Histogram of the representative scan angles in a sweep (center) and histogram of the
number of 2D scans in a sweep (right). 3D aggregates of the scans in each sweep are streamed at ~5 Hz
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Fig. 11 A scan from the 3D Hokuyo (top). A photo of the correspond-
ing scene (bottom). Clusters in the former from landmark poles are
clearly visible

through the use of a calibrated ground plane. In (Bohren et al.
2008), we found that it outperformed RANSAC for road seg-
mentation, and therefore employed it here as well.

IRLS starts with an estimate of an ideal ground plane
derived from the extrinsic calibration parameters of the 3D
cameras. We model the plane at time k as

Iy = agx + by + ¢z +dk = 0. (16)

The assumption is that the ground plane orientation changes
with time, but that the rate of change is small in comparison

to the scan rate of the 3D camera (=7 Hz). Let P, € R3*”
denote the n points returned from a 3D camera image at time
k. The normal distance from point py = [xk, Yk, ulT e Py
on the ground plane at time k to the estimate to the ground
plane at the previous time [1x—; should be small in practice.
This notion is formalized by solving a problem of the form:

n

i W (pr,. M- .+ by, +d)?
m‘“dz (Pk;» TT—1)(axy; + byy, + czx; +d)

a,b,c,

i=1

a7)

m
+ Z W(q;j, Mx—1)(ax; + by; + czj +d)?,
j=1

where py; denotes the i " point of the 3D camera image at
time k, W : R? x IT — R is a weighting function of the
form:

l—«
L+ B exp(y f(p,IT) =&

W(p, IT) = [ ) +a] g(p). (18)

where the first expression is a logistic function of the normal
distance from the point p to the plane I7 denoted as f(-)
and the second expression is a function g(p) that scales the
measurement based on the x component of p = [x, y, z].
This is to mitigate the effect of a greater density of points
returned at closer ranges. The first term in the minimization
problem operates on the points in the current 3D camera
scan Py. The second term is a regularization component that
operates on points Q € R3*” that are uniformly sampled
from the ideal ground plane.

5.3 Landmark segmentation

SWS landmark segmentation follows the same general proce-
dure described in Sect. 4.2.2, but data from the 3D Hokuyo
are used as input. These data have different characteristics
than the side-facing LIDAR data of the Mapping Trike. First,
the ground plane does not need to be segmented as it is first
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seen at approximately 9 m, and we restrict landmark segmen-
tation to ranges of 8 m or less. Second, the vertical angular
resolution is larger with the actuated LIDAR, so the cluster-
ing procedure uses a maximal intra-cluster distance of 45 cm
rather than the 10 cm figure previously stated.

5.4 Localization

Localization of the SWS was performed using a Rao-
Blackwellized particle filter approach similar to the Fast-
SLAM 2.0 algorithm (Montemerlo and Thrun 2007). The
FastSLAM algorithm is a solution to the simultaneous local-
ization and mapping problem. Since our landmark map was
known a priori, we were only concerned with the localiza-
tion aspect. The particle filter approach was chosen because
it was more robust to aspects of the environment that were
not modeled by the system, namely the assumption the SWS
is operating on a perfect 2D plane.

A set of p particles was maintained where each particle

had the form:
Yk[p] _ <x,£p]7 (M[lp]’ 2{17])7 (M%)], Ez[vp]»v (19)
where x,"" was the pose of the pth particle at time k defined
as [x, y, 017 where x and y were the Cartesian coordinates
and 6 was the SWS’s orientation with respect to the map’s
frame. Every particle was initialized with a map containing
the mean, P!, and covariance estimate, X171, for each land-
mark in the map. The mean vector had the form [x;, y;, s17,
where x; and y; were the landmark’s position and s was the
landmark’s signature, which contained additional semantic
information to facilitate data association. In our case, the
signature value represented the radius of the pole feature.
The number of particles used in our implementation was 60
and, for the purposes of planning, the mean of all the pose
components was used.

The prediction phase of the filter consisted of sampling
from a probabilistic motion model of a differential drive robot
where the control inputs (v, w) were corrupted with additive
Gaussian noise (Thrun et al. 2005); two noise parameters
were used for error in translational movement due to linear
and rotational motion (a; = 0.05 and a; = 0.01) as well as
two for the error in rotational movement due to linear and
rotational motion (a3 = 0.001) and (a4 = 0.1). These para-
meters were determined empirically under the assumption
that a diverse particle set improves localization performance.
As such, the values chosen were an exaggeration of the true
noise model.

Data association of segmented landmarks was done by
using a maximum likelihood correspondence. During the
correction phase of the filter, for a given particle p, every
observation at time k was compared to each of the landmarks
in p’s map and a weight was computed for each observation -

[pl
k
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landmark pair that measured the likelihood that the observa-
tion corresponded to the landmark. Observations were of the
form: z = [p, ¢, 517, where the components corresponded
to the range, bearing, and signature (radius of the pole). The
weight was approximated by a Gaussian with mean (z —Z),
where z is the measured observation and Z; is the predicted
observation of particle p’s jth landmark, and covariance
matrix Q; = H; Z";PJ HIT + Q, where H; is the Jacobian

taken with respect to the map features, Ej[-p Vis the covari-
ance of particle p’s jth landmark, and Q is the linearized
measurement noise. The weight assigned to each association
was the Mahalanobis distance, defined as:

1
wj =27 Q;|7"*exp (_E(Z "o e - ﬁj)) - (20)

The landmark with the maximum weight was chosen to be
associated with an observation if it exceeded a minimum
threshold. We found that the addition of the signature led to
fewer false data associations than using location alone.

5.5 Navigation

The navigation component of the SWS is composed of two
main tasks: mapping the immediate local environment from
sensor data and planning a path through this local environ-
ment. At the user level, navigation only requires two inputs.
The first is selecting a destination. The second is resuming
the SWS when it pauses at locations where the user must
determine when it is safe, such as crossing a street. The lat-
ter is necessary, as some street crossings feature high speed
automobile traffic that would be detected too slowly with the
on-board sensor suite.

5.5.1 Constructing the local map

The SWS employed a local map modeled as a 2D occupancy
grid for the purpose of generating local plans. This local
map was centered at the position of the SWS and moved
with the SWS in a rolling window fashion. We leveraged
ROS (Quigley et al. 2009) for populating and clearing cells
in the local map via raytracing techniques. For navigation
purposes, 3D points from both the filtered 3D camera data
streams (Sect. 5.1.1) and the point cloud from the 3D Hokuyo
(Sect. 5.1.2) were projected down to the 2D occupancy grid
M where each cell in the grid that contained a projected point
was classified as occupied. Each occupied cell M (x, y) was
given an obstacle cost value C,ps:(x, y) = 00. Nearby cells
were also assigned cost values based on the proximity to
occupied cells as well as the footprint of the SWS; if the
SWS were to occupy a cell M (x, y) and any portion of its
footprint would overlap an obstacle cell where C,py (x, v) =
00, then that cell was also assigned a value of oo making it
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Fig. 12 Navigation visualization. The black rectangle is the robot foot-
print, the red line is the desired path, the yellow line is the lowest cost
trajectory. The bright green cells are obstacles of maximum cost. Obsta-
cle cells are inflated with a high cost region in blue (Color figure online)

untraversable by the local planner. Otherwise, obstacles were
modeled by exponential potential functions.

In addition to the occupancy cost for each cell, the local
map also maintained planning related costs for each cell
Cgoal(x,y) and Cparn(x, y). Cgoar Was proportional to the
distance from the current SWS position and the subgoal posi-
tion G; (the closest waypoint to the goal that is within the
SWS’s local map M) which was given a zero cost value. Sim-
ilarly, Cpq, was proportional to the distance from the SWS’s
position to the cells along the waypoint path where path cells
were determined by linear interpolation between the way-
points and assigned a cost of zero. The resulting occupancy
map M and associated costs Copsss Cgoars and Cparp Were
used by the local planner for trajectory planning. Figure 12
depicts an example of a local map.

5.5.2 Planning

The global planner for the SWS is intuitive; given the way-
point network, G(V, E), described in Sect. 4.4 and a desired
destination v € V, the path to the destination is computed
via Dijkstra’s algorithm. Note that the weight for each edge
is the estimated traversal time rather than the distance, so the
path returned from Dijkstra’s algorithm minimizes the esti-
mated traversal time and does not necessarily correspond to
the shortest distance.

A sample based approach was used for local planning
where the input space ranges over linear and angular veloc-
ities (v, ) (LaValle 2006). Sampling control velocities in
this way ensured that the trajectory honored the kinematics
of the SWS. At the beginning of each planning cycle, a set
of trajectories of the form:

(21)

T, = (X, 01,01, ..., Vs, ®p),

were sampled over the range of velocities v € [0.1, 1.2] m/s
and w € [—0.3,0.3] rad/s where x is the pose of the SWS
and n denotes the number of discrete time steps in the control
horizon. Each sampled trajectory 7; was then evaluated with
a cost function of the form:

C(T;, M) = Copst + klcgoal + kZCpathv (22)
where M is the occupancy map described in Sect. 5.5.1 and
k1 and ky are tunable gain parameters. C,p; Was the maxi-
mum obstacle cost of any cell along the specified trajectory. If
Copst = 00, the trajectory was infeasible as it passed through
an obstacle and was discarded. The goal and path costs were
determined by the endpoint of the trajectory (x’,y’) and
assigned the values Cgoqr(x', y") and Cpgin (x', y"). The opti-
mal trajectory T* = argmin C(T, M) was selected and the

associated velocity command (v*, ®*) € T* was issued to
the SWS Motion Control Module (MCM).

6 Experimental results

To demonstrate the effectiveness of the two major compo-
nents of the smart wheelchair ecosystem, namely the server
mapping component and the client SWS, a map was con-
structed following a path starting at the loading dock of
Packard Lab and then going across the street and circling a
multi-block loop in South Bethlehem, PA. This route (shown
at Fig. 13) was chosen for several reasons:

(1) The route was of significant length ( 1 km) and had diver-
sity in the frequency and signature of landmarks.

(2) The route contained a large loop which allowed us to test
loop closure.

(3) The route was not flat. The streets running in the north-
south direction had a grade of approximately 8.5 %. This
allowed us to test the effectiveness of the 2D localiza-
tion and mapping approach across significant changes in
elevation.

We should emphasize that the density of landmarks played
no role in the selection of this route, as pole features appear
to be universally pervasive in South Bethlehem.

The following sections describe the mapping results and
SWS navigation results.

6.1 Server mapping performance

To test the performance of the server mapping component, we
mapped a multi-block area in South Bethlehem, PA shown
in Fig. 13. The route is 1 km in length, and features a loop of
approximately 944 m. To validate the effectiveness of land-
mark segmentation by the Mapping Trike, the number of
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Fig. 13 Satellite view of the block route network. The route is depicted
as the green path. The yellow circles indicate the landmark features. The
distance around the loop is approximately 944 m. The six stop sign icons
correspond to locations where the SWS automatically stops and waits

landmarks along this route (187) were counted by hand as a
ground truth measure. This was compared against the output
of the map initialization and refinement stages. The land-
mark segmentation procedure in the map initialization step
successfully detected 186 of the ground truth poles. The sole
missing landmark was a lamp post with a bike chained to it,
so its omission was not unexpected. More significantly, there
were 32 false positives which were associated with stationary
pedestrians and the corners of buildings. The latter occurred
when the sliding window only caught the very beginning
of a building facade. These false positives could be readily
eliminated by not accepting landmarks at the leading edge
of the sliding window, as they would reappear in the center
of the window at the next time-step and be easily discrimi-
nated. Eliminating false positives from pedestrians would be
somewhat more complicated, likely requiring a vision system
implementing people detection as a validation gate. As this
was not available in the current Mapping Trike configuration,
these false positives were removed manually.

By comparison, the final landmark map contained 185
landmarks after the refinement stage. The sole discrepancy
between this value and the ground truth was due to a false data
associations in the EKF SLAM procedure where two poles
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for the operator to determine when it is safe to cross. The numbered
locations correspond to labeled destinations for SWS navigation (Color
figure online)

were sufficiently close to one another (<10 cm) and associ-
ated as being the same pole. As a measure of map accuracy,
the final landmark map was compared to the satellite image.
The coordinates of 24 clearly visible poles were obtained by
clicking their positions on the satellite map and the distances
to the associated poles in the landmark map were computed.
The mean error in distance was 66 cm with a maximum error
of 115 cm and a minimum error of 28 cm. These values are
only an approximate measure of map accuracy as errors in
clicking and satellite imagery are confounding factors.

To validate the generality of the server mapping compo-
nent, we mapped a second neighboring block depicted in
Fig. 14. The reason for this was that the parameters for the
mapping procedure (e.g., the pole segmentation parameters)
were tuned using data from this same loop. As a result, a
test set disjoint from the training set was required. Using the
same parameters as the first map, all 129 landmarks in the
second map were successfully detected. However, 25 false
positives were also detected. In addition to the types detected
in the first map, there were also false positives from the sup-
ports of windows and glass doors, as well as from the fence
posts of a chain link fence. These additional false positives
are interesting cases. To elaborate, like the mapping vehicle
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Fig. 14 Satellite view of a second block mapped with the trike using the
same parameters as the first block. The red circles indicate the landmark
features and the yellow circles indicate false positives. The distance
around the loop is approximately 585 m. Out of 129 manually counted
ground truth poles 100 % were successfully segmented. However, 25
false positives were detected (Color figure online)

our SWS segmented landmarks using 3D point cloud data.
As aresult, window supports or chain link fence posts likely
would also be detected as landmarks by the SWS and cor-
rectly associated with those in the map. So, an argument could
be made for labeling these as true positives and keeping them
in the map. However, an alternate sensing modality (e.g., a
camera based vision system) likely would not detect these
as landmarks. Ultimately, since they did not meet our strict
geometric definition for a pole feature, they were categorized
as false positives.

We also note that the north-south distance of both loops
was approximately 175 m along a grade of 8.5 %. Without
compensating for this grade, landmark positions on the north
and south ends of the map would be shifted 60—70 cm which
would place many in the street. However, a review of the map
indicates that these did in fact remain on the sidewalk. This
validated our approach to projecting the landmark positions
to the UTM frame. Since it is difficult to qualitatively discern
the landmark accuracy at the scale of the map in Figs. 13 and
15 depicts a zoomed in view of a section of the map in Fig.
13. This section was chosen for two reasons: the landmarks
are visible in the satellite image and it is along the east-west
direction and could suffer from the previously mentioned
shifting effect.

Fig. 15 A close up view of the map in Fig. 13. The landmarks are
depicted as red crosses (Color figure online)

6.2 SWS localization accuracy

In an attempt to quantify the accuracy of the proposed map-
based localization approach, the SWS was manually driven
around the loop but with the localization module running. It
was then stopped immediately adjacent to a reference land-
mark, and the normal distance from the base of the SWS to
the landmark was measured manually. At the same time, this
distance was also captured using the SWS’s localized posi-
tion. This process was repeated for a total of 30 landmarks.

This experiment was conducted a total of three times with
landmark maps containing 50, 75, and 100 % of the total
landmarks. The motivation for reducing the number of land-
marks available to the localization module was to assess the
impact of landmark occlusion, e.g., what happens if half the
landmarks are occluded by pedestrians? The results of these
experiments are summarized in Fig. 16 with box plots for
each landmark map. These indicate that sub-decimeter level
1D accuracy could be expected when even just half the land-
marks are visible. To place these results in the proper context,
we note that the authors in (Baldwin and Newman 2012) eval-
uated their own approach in a somewhat urban environment
against a “high caliber” DGPS/IMU system. They achieved
a median path error of ~0.5 m, while the DGPS/IMU error
was ~1.0 m. While theirs and our test procedures were not
entirely consistent, these results support the assertion that our
map-based localization approach can achieve significantly
better performance than a DGPS/IMU solution in urban envi-
ronments.

6.3 SWS navigation performance

To demonstrate autonomous navigation of the client SWS,
the landmark map and the route network generated from
Sect. 6.1 were downloaded by the SWS from the cloud to
support the navigation task. Subsequently over the course of
two days, the SWS drove autonomously around the loop (a
distance of approximately 944 m) five times in cach direction.
The reason for 10 loops was to demonstrate areasonable level
of reliability. The rationale for both clockwise and counter-
clockwise loops was not just scene diversity. We also wanted
to investigate the impact (if any) of bias in the mapping pro-
cedure, as the map was constructed with the trike driving
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Fig. 16 A comparison of 1d localization error from 30 reference loca-
tions. Localization was performed on three landmark maps containing
50, 75, and 100 % of the landmarks. Each respective box plot shows the
median, 25th, and 75th percentiles, with outliers plotted as individual
points

in only one direction. In our test protocol, once initiated the
operation of the SWS was to be completely autonomous. The
only exception was when groups of pedestrians blocked the
sidewalk, where it was manually paused for safety consid-
erations. With lone pedestrians, the SWS was not hindered
from performing obstacle avoidance.

Testing was run under winter conditions that were less than
ideal. Figure 17 depicts some of these instances. In some
areas, frost heave significantly disturbed sidewalk pavers.
This caused surface deviations as much as 8 cm in height.
Generous use of snow melt (i.e., rock salt) further reduced
traction in thesc arcas. Despite these challenges, the SWS
motor controller performed well, although there was a notice-
able decrease in velocity when traversing up steep grades.
Landmarks in the map were also changed in unexpected
ways. For example, a sequence of ten parking meters featured
in the landmark map were covered by local law enforcement
to indicate that parking was temporarily prohibited (Fig. 17).
These coverings altered the signatures reported by the 3D
Hokuyo which the localization relies upon. This particu-
lar stretch has two of the largest dead reckoning lengths

(~13.5 m) where the only landmarks were these parking
meters. In spite of these discrepancies, accurate localization
was maintained.

In total, the SWS traveled a distance of 10.3 km over an
operational time of 222 min. The longest run of continu-
ous operation was for 88 min covering 3.7 km, and was only
suspended due to depletion of the laptop battery. No localiza-
tion failures were observed during testing. However, during
one trial manual intervention was required duc to a control
“failure.” Specifically, a large amount of road salt in an area
where sidewalk pavers were pushed up significantly from
frost heave (similar to Fig. 17) resulted in the SWS drive
wheels spinning in place, and the SWS could not overcome
the “obstacle” on the first try. This required the operator to
manually back up the SWS less than 1 m. A second attempt
under autonomous control was successful and the trial con-
tinued to the end. We should emphasize that localization was
not lost even with the wheel slippage as the 3D Hokuyo was
able to observe landmarks during the episode.

Additional images highlighting points of interest during
course navigation are shown at Fig. 18. A more informative
video from testing can be viewed at http://vader.cse.lehigh.
edu/videos/sws_navigation.mpeg.

An interesting question posed by one of the reviewers (for
which we are grateful) was the impact on system perfor-
mance if false positives in the landmark map had not been
removed. We had assumed this was necessary, but was this
in fact the case? To assess this, logged data from the ten trials
was used to localize the SWS using the landmark map with
both true and false positives in place. If a localization fail-
ure occurred during playback of the log file, the SWS was
manually re-localized and the log file was continued from
that point. Of the five clockwise trials, three had localization
failures. Two suffered from a single failure but completed
the loop upon resumption. The third had to be reset twice.
Of the five counter-clockwise trials, two had localization fail-
ures. One was able to complete the loop after being manually
reset, while the second had to be reset twice. Thus, the suc-
cess rate for this route dropped from 100 to 50 %, motivating
the need for an accurate landmark map.

Fig. 17 Changes to the environment not modeled by the system. Winter conditions raised the curb cut out by 8 cm (left). A parking meter covered

by a bag (center). A bike chained to a tree (right)
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Fig. 18 Photos of the SWS in operation, highlighting interactions with pedestrians (left), the narrowness and clutter of certain sidewalk areas

(center), and automatically pausing at a crosswalk (right)

6.4 SWS path planning performance

The results presented in Sect. 6.2 provided insights into the
accuracy of the localization system only. Uncertainty in SWS
planning and control was deliberately removed from the eval-
uation. However, we were also interested in quantifying the
performance of the planner itself. To do this, we examined the
paths of the 10 trials to evaluate their consistency. This was
done using the pose estimates provided by the localization
module as ground truth. Since these estimates are assumed
to be correct, localization uncertainty is removed from the
analysis and the variance in path following can be attributed
entirely to planner performance.

Figure 19 shows three 20 m sections of the route. The three
sections were chosen arbitrarily except to evaluate locations
with different densities of landmark features. Each section
has ten paths shown (five in each direction), with the land-
marks depicted as blue circles and the waypoints as black
circles. Note the relative size of a landmark circle reflects its
signature (its radius). Also note the radius of each waypoint
(50 cm) includes the local planner’s tolerance to reach the
waypoint.

Qualitatively from the figure, planning performance is
very good. To quantify this, we computed the 1D mean
absolute error (MAE) and 1D standard deviation of the paths
across a range of cross-sectional samples. These values were
computed by taking 50 evenly spaced locations along the x
axis. For each of these locations, the average normal was
computed where it intersected the given x coordinate. Then
the cross-sectional line was computed using the x coordinate
and the mean y coordinate as a base point, and the aver-
age surface normal as the slope. The points of intersection
of the paths along the cross-sectional line were then found
and transformed to reduce the dimension to one via princi-
pal component analysis. The now 1D values were centered
so that the mean value was zero. Finally, the data from each
of the 50 cross sections were pooled to compute the MAE
and standard deviation as it was in a compatible form. The
three data sets were evaluated separately. The top figure had
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Fig. 19 Close up of ten paths (five in each direction) on 20 m sections
of the block with various densities of landmarks. The landmarks are
depicted in blue. The black circles indicate the tolerance for hitting a
waypoint and have a radius of 50 cm (Color figure online)

a MAE of 1.8 cm and a standard deviation of 2.1 cm. The
middle figure had a MAE of 1.7 cm and a standard devia-
tion of 2 cm. The bottom figure had a MAE of 1.9 cm and a
standard deviation of 2.4 cm.

When evaluated in conjunction with the localization
performance reported in Sect. 6.2, we would expect the
wheelchair to consistently drive the same path to a tolerance
of approximately £10 cm. This is in fact consistent with our
subjective observations made during testing.

6.5 Simulated user testing

The results presented in Sect. 6.3 are limited in the sense that
they do not reflect typical user operation. Specifically, it is the
sameroute repeated 5x in two directions. Ideally, user testing
with non-confederate participants would be conducted. Due
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Table 1 Results of simulated user trials, where each destination was
randomly generated

Path Distance (m)
2—>5—->8 572
4—->10—>17 943
6—>5—>8 385
9—>10—6 463
2514 199

All trials were successfully completed without incident

to concerns with human-subjects use and institutional review
board (IRB) requirements, we chose to simulate such a use.

First, a total of ten destinations of interest were identified
in the test loop and a semantic label was attached to each.
These are listed below. Note the numbers correspond to the
locations highlighted in Fig. 13.

(1) Apartment 20 on Morton Street
(2) Police station on Morton Street
(3) Book store at Campus Square
(4) Apartment 14 on Morton Street
(5) Entrance to Whitaker Lab on Webster Street
(6) Entrance to Whitaker Lab on Packard Avenue
(7) Entrance to Mudd on Packard Avenue
(8) Taccoca plaza on Packard Avenue
(9) Entrance to STEPS on Packard Avenue
(10) Entrance to STEPS on Vine Street

We then performed five trials using random sampling
without replacement. First, a random starting location was
chosen. This was followed by a random intermediate goal
location, and then a random final goal. Table 1 shows the
path locations and total distance traveled for each trial. We
should note that these trials were performed during sidewalk
construction on Vine Street, so the link between destinations
one and ten had to be removed. As a consequence, some of
the global plans (e.g, 4 — 10 — 7) between locations were
longer distance than usual.

All 5 trials were successfully completed without incident.
These amounted to a total of 2.6 km of additional autonomous
operations.

7 Discussion

In this work, we presented a system level approach to SWS
navigation in urban environments. The proposed ecosys-
tem features a mapping service which generates large-scale
landmark maps, and the client SWS which integrates 3D
perception for robust navigation in unstructured, outdoor
environments. In our experiments, the SWS was able to
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reliably navigate over a distance of >12 km without losing
localization. From this, we claim the proposed map-based
localization approach can provide the performance of a high-
end GPS/INS system, but without the cost.

We are firm believers in the future of map-based local-
ization solutions for urban environments that leverage 3D
LIDAR/camera systems. We further note that since the ini-
tial draft of this paper was submitted, our 3D Hokuyo was
rendered obsolete by the release of the Velodyne VLP-16
“Puck” LIDAR. In the same window, our IFM O3D200 3D
cameras were also superseded by the release of the O3D303;
the smaller, more accurate, lower-cost successor has 29 times
the pixels of the O3D200. These higher performance sensors
would only improve the performance of our current system.

There are of course concerns with map-based solutions
to the localization problem. Two obvious questions are: (1)
what happens if a feature is removed (e.g., a tree is cut down),
and (2) what happens if a new feature is added (e.g., a tree
is planted). Fortunately, the proposed approach is robust to
such small-scale changes. In the former case, the removed
feature will not be detected by the SWS and would be han-
dled no differently than when a feature is occluded (i.e., no
measurement update). In the latter case, the new feature will
be detected by the SWS. However, there will be no respective
feature in the landmark map. As aresult, data association will
likely fail so again the result will be a “nop.” One could imag-
ine a pathological case where a feature is removed, and a new
featured added at approximately (but not exactly) the same
location. If the new feature had the same signature as the old
one, there is the potential for it to be wrongly associated in
the landmark map. However, the error tolerance would have
to be comparable to the uncertainty in wheelchair position
which we have shown to be quite small. As aresult, we expect
the impact to localization accuracy in even this pathological
case to be small.

Despite being relatively stable, large-scale changes do
occur in urban areas. We saw this first-hand when the
STEPS building was recently constructed at Lehigh Univer-
sity, affecting a roughly 100 m stretch in our map. We also
demonstrated in Sect. 5.5 that large-scale errors in the map
(i.e., 15 % false positive landmarks) will result in localiza-
tion failure. While there might be potential for SWS clients to
update the map in crowd-sourcing fashion, in all likelihood
remapping would be necessary in such an event.

While we were pleased with the navigation performance
of the SWS, improvements are needed in the mapping service
component. Specifically, false positives in landmark seg-
mentation must be eliminated and an improved localization
approach is necessary. However, in fairness these shortcom-
ings are of less concern than if the issues were with the SWS
itself. The Mapping Trike was fabricated from hardware on-
hand, and within the constraints of our limited budget. In
practice, such server vehicles would be viewed as part of the
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infrastructure. So, while the price of an SWS needs to be com-
petitive for the consumer, cost constraints would be less of a
concern for the mapping vehicle. As aresult, we expect short-
comings in mapping performance could be readily addressed
with improvements in hardware and/or software.

There may also be questions regarding the right choice of
landmark map and/or robot belief. Is a metric-based approach
correct, or even necessary? Urban environments would seem
to lend themselves to topological maps. In truth, we believe
an ideal approach would integrate parts of both approaches.
We have done preliminary work in terrain classification to
automatically distinguish between sidewalk, asphalt, grass,
and “other” terrain classes using remission measurements
from the O3D200 3D cameras (Montellaetal. 2012). It would
also be straightforward to embed this additional semantic
information within the edges of our route network graph. We
expect this additional terrain information information will
improve navigation performance over geometric information
alone, and is a topic of ongoing research.

Furthermore, our initial metric-based map assumption was
the impetus for utilizing satellite images to find known corre-
spondences for the mapping procedure as these are anchored
to a global coordinate frame. If we only need maps that are
locally consistent, then the problem of closing the loop in our
map could be automated using existing techniques. Again,
both approaches have merit.

We also must acknowledge that since the focus of this
work has been on SWS navigation, only limited work has
been done on the human—robot interface (HRI). To date, we
have investigated the use of an Emotiv EPOC brain con-
trol interface as an input device. We had hoped to identify
a minimum of three inputs (turn left, turn right, start/stop
toggle) to cue the SWS to the desired travel direction for
semi-autonomous operation. However, to date we have only
been successful in having a single input work reliably. We
demonstrated this functionality during autonomous naviga-
tion as a start/stop toggle for E-Stop, and for resuming SWS
operation after encountering a stop sign in the map. In part
based upon this experience, we believe that at least in the short
term the SWS interface should be voice-based. The quality
and reliability of voice recognition systems has improved
dramatically in the past decade, and we feel this would pro-
vide the best hand-free solution for the largest number of
users. We are currently working to validate this hypothesis.

Finally, one significant aspect of urban environments that
was ignored in this work was navigation in crowds. This is
a rich research area in its own right, and one we intend to
investigate with zeal in the future. One insight we are happy
to report is that on the whole, pedestrians are largely con-
siderate of the SWS and give it a wide berth. We discovered
through many hours of testing that despite its sensor “warts,”
the SWS is perceived merely as a person operating a conven-
tional EPW and not as a smart wheelchair system. We believe

this “disguise” will be an asset when navigating crowded
environments.
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