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Summary. In this paper, we develop a suite of motion planning strategies suitable for large-
scale sensor networks. These solve the problem of reconfiguring the network to a new shape
while minimizing either the total distance traveled by the nodes or the maximum distance
traveled by any node. Three network paradigms are investigated: centralized, computation-
ally distributed, and decentralized. For the centralized case, optimal solutions are obtained
in O(m log m) time in practice using a logarithmic-barrier method. Key tothis complexity
is transforming the associated Karush-Kuhn-Tucker (KKT) matrix to a mono-banded system
solvable inO(m) time. These results are then extended to a distributed approach that allows
the computation to be evenly partitioned across them nodes in exchange forO(m log m) mes-
sages in the overlay network. Finally, we offer a decentralized, hierarchical approach whereby
follower nodes are able to solve for their objective positions in O(1) time from observing
the headings of a small number (2-4) of leader nodes. This is akin to biological systems (e.g.
schools of fish, flocks of birds,etc.) capable of complex formation changes using only local
sensor feedback. We expect these results will prove useful in extending the mission life of
large-scale mobile sensor networks.

1 Introduction

Consider the initial deployment of a wireless sensor network (WSN). Ideally, the
WSN is fully connected with a topology to facilitate coverage, sensing, localization,
and data routing. Unfortunately, since deployment methodscan vary from aerial to
manual, the initial configuration could be far from ideal. Asa result, the WSN may
be congested, disconnected, and incapable of localizing itself in the environment.
Node failures in established networks could have similar effects. Such limitations in
static networks have lead to an increased research interestinto improving network
efficiency via nodes that support at least limited mobility [3].

Also of fundamental importance to WSN research is resource management, and
perhaps most importantly power managment. Energy consumption is the most limit-
ing factor in the use of wireless sensor networks, as servicelife is limited by onboard
battery capacity. This constraint has driven research intopower sensitive routing pro-
tocols, sleeping protocols, and even network architectures for minimizing data traffic
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[1, 2, 12]. It would only seem natural then to develop motion planning strategies with
similar performance objectives.

In this vein, we propose a set ofmotion planning strategiesthat allow a mobile
network to reconfigure to a new geometry while minimizing thetotal distance the
nodes must travel, or the maximum distance that any node musttravel. We believe
a suite of strategies is critical due to the proliferation ofnon-standard sensor net-
work architectures which are often implementation specific. As such, we provide
centralized, computationally distributed, and decentralized approaches suitable for
use with large-scale sensor network architectures. Each iscomputationally efficient,
and without onerous communication overhead. We expect these results will be useful
for extending the mission life of large-scale mobile networks.

2 Related Work

Changes to the environment, mission objectives, and node failures are all factors
that can contribute to need for reconfiguring a sensor network. However, tolopology
changes can also be driven by performance objectives. For example, Corteset al
applied optimization based techniques to motion planning for improving network
coverage [8]. Similarly, Zhang and Sukhatme investigated using motion to control
node density [23]. The work of Hidakaet al investigated deployment strategies for
optimizing localization performance [18], while the work of Butler and Rus was
motivated by event monitoring using constrained resources[7].

There has also been extensive research in “collective” robot motion within the
control community. Feddemaet al.applied decentralized optimization based control
to solve a variety of multi-robot problems [13]. Also worth noting is work in the
areas of formation control [24], conflict resolution [19], and cooperatice control [4].
A recent survey/tutorial outlining additional relevant work within each of these areas
can be found in [14].

In contrast to these efforts, the focus of our work is efficient motion plan-
ning strategies suitable for large-scale networks. Given initial and objective network
geometries, we determine how to optimally reposition each node in order to achieve
the objective configuration while minimizing the distancesthat the nodes must travel.
The objective positions can then be fed to appropriate controllers to drive the nodes
to their desired destinations. When servo/actuator costs dominate the power budget,
such approaches can dramatically improve the network mission life. We also em-
phasize applicability to large-scale systems. Our methodsscale well in terms of both
computational and message complexity to ensure that advantages gained through ef-
ficient motion planning are not compromised by excessive computation or routing
requirements. Finally, we provide centralized, computationally distributed, and de-
centralized models to support the diverse array of WSN architectures.
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3 The Motion Planning Problem

In developing our motion planning strategies, we leverage results from our previous
work [22] where it was shown that theshapeof a robot formation could be expressed
as the set of linear equality constraints

‖ s2 − s1 ‖ (qxi − qx1 ) − (sxi , s
y
i )
T (q2 − q1) = 0, i = 3 . . .m

‖ s2 − s1 ‖ (qyi − q
y
1 ) − (syi , s

x
i )
T (q2 − q1) = 0, i = 3 . . .m

(1)

whereQ = [q1, . . . , qm]
T
∈ R

m×2 denote the concatenated coordinates of the ob-
jective formation shape,S = [s1, . . . , sm]

T
∈ R

m×2 represents an instance or an
iconof our objective shape, and the(x, y) superscripts denote the specific Euclidean
coordinate.

These constraints define the equivalence class of the full set of similarity transfor-
mations of the formation. Thus, if an objective shapeQ and an iconS satisfy these
constraints, the two shapes are equivalent under the Euclidean similarity transfor-
mations of translation, rotation and scaling. This is a traditional definition of shape
employed in statistical shape analysis [11]. So, given an initial formation position
P = [p1, . . . , pm]

T
∈ R

m×2 , and an objective shape iconS, the problem becomes
finding the set of objective positionsQ ∼ S such that

1. max ‖ qi − pi ‖ is minimized fori = 1, . . . ,m OR

2.
k
∑

i=1

‖ qi − pi ‖ is minimized.

In other words, if the network were given an objective iconS, it must determine the
objective positions for each node that minimize the maximumdistance or the total
distance the nodes must travel, and where the final shapeQ is equivalent toS.

Since the constraints are linear inQ, the problems can be modeled as the respec-
tive second-order cone programs (SOCPs)

min
q,t1

t1 min
q,t

k
∑

i=1

ti

s.t. ‖ qi − pi ‖2≤ t1, s.t. ‖ qi − pi ‖2≤ ti
Aq = 0 Aq = 0

(2)

for i = 1, . . . ,m and where theA matrix corresponds to the constraint set defined
by (1). Since the SOCPs are convex, a local minimum corresponds to a global min-
imum. This allows optimal solutions to be obtained through avariety of methods
such as descent techniques or (more efficiently) by interiorpoint methods (IPMs).
While primal-dual IPMs represent perhaps the most efficientalgorithms, we employ
a simpler barrier IPM. It provides good computational complexity in practice, and as
we shall see lends itself to a computationally distributed implementation.

Finally, we should note that in the interest of brevity the results presented here
focus on the SOCP for themini-maxdistance metric as defined in Equation 2 (left).
Similar results for the total distance metric can be found inthe extended technical
report version of this paper [10].
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4 A Centralized Approach

Centralized approaches are appropriate for hierarchical network architecures such as
the TENET [12]. In this paradigm, more powerful “master” nodes execute all com-
putationally complex algorithms, while the small-form-factor (SFF) motes merely
provide data input. Thus for the motion planning problem, master nodes acting as
cluster heads would calculate the objective positions for the cluster and commu-
nicate these to the SFF nodes. While simple in design, the hierarchy requires that
algorithms scale scale well computationally with the size of the network.

To address this, we solve the motion planning problem by adapting the logarith-
mic penalty-barrier approach [5]. Like other IPMs, the complexity is largely defined
by solving a linear system of equations. In this case, Equality-constrained Newton’s
method (ENM) is used for internal minimization and the linear system is in KKT
form. We show that by reformulating the SOCP, we can band the KKT matrix to
solve the system inO(m) time via algorithms that exploit knowledge of matrix band-
width. Furthermore, we show empirically that the total number of iterations required
to reduce the duality gap to a desired tolerance isO(logm). The result is a simple
IPM that in practice solves the shape problems in orderO(m logm) time.

4.1 Reformulating the Shape Problems

The original shape problem can be restated in a relaxed form suitable for solving via
the barrier approach. Conversion requires augmenting the objective function given in
(2) with the log-barrier terms corresponding to the problem’s conic constraints. The
problem is restated in its equivalent form as follows:

min
q,t1

τt1 −
m
∑

i=1

log (t21 − uTi ui)

s. t. Aq = 0
ui = qi − pi

(3)

For the sake of clarity, the linear constraintui = qi − pi is included; however, it
is assumed that it will be eliminated by substitution upon implementation.

4.2 Banding the KKT System

Noting that the KKT system for the shape problem is symmetricindefinite, we em-
ploy Gaussian elimination with non-symmetric partial pivoting. The performance of
Gaussian elimination suffers significantly due to fill-in when the linear system in
question features dense rows and/or columns [21]. Observing the non-zero dot-plot
of the nominal KKT formulation given in Figure 1 (left), it isevident that (3) does
not facilitate efficient solving due to the dense features. As our objective is to make
the KKT system banded so that it can be solved inO(m) [20], we restate the problem
in the following equivalent form:
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Fig. 1.The dot plots of the KKT systems for the unregulated orientation/scale shape problem.
The pattern corresponds to a system of 25 nodes inR

2. (Left) KKT system sparsity struc-
ture for the maximum distance metric problem. (Center) Augmented KKT system sparsity
structure. (Right) The banded KKT system with a lower and upper bandwidth of 8.

min
q,t

τ
m

m
∑

i=1

ti −
m
∑

i=1

log (t2i − uTi ui)

s. t. Aq = 0
ti+1 = ti, i = 1, . . . ,m− 1
d2i+1 = d2i−1, i = 1, . . . ,m− 3
d2(i+1) = d2i, i = 1, . . . ,m− 3
ui = qi − pi, i = 1, . . . ,m
d1 = q1
d2 = q2

(4)

Observe that the objective has changed from (3); however, wesee that both forms
are equivalent since:

τ

m

m
∑

i=1

ti =
τ

m

m
∑

i=1

t1 =
( τ

m

)

mt1 = τt1 (5)

The first equality holds due to the equality constraints placed onti.
Given this formulation, our claim is that the system can be made banded. In order

to show the validity of this statement, we begin by defining the nominal solution
vector for the KKT matrix. It is given as follows:

[

δηT1 , δη
T
2 , δκ

T
1 , . . . , δκ

T
(m−2), µ

T
]T

(6)

δηi =

[

δqi
δti

]

δκi =





δd2(i−1)+1

δd2(i−1)+2

δη(i+2)



 µ =







w1

...
w7m−13







and theδ variables correspond to the primal Newton step components associated
with each of the respective system variables.
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Given the new objective function and assuming the shape problem’s solution
vector permutation corresponds with the permutation yielding (6), the Hessian for
our problem is now:

H =

















ψ1 . . . 0
ψ2

... ψ3

...
. . .

0 . . . ψm

















(7)

ψi = ▽2φ(ui, ti), i ∈ {1, 2}

ψi =

[

04×4 04×3

03×4 ▽2φ(ui, ti)

]

, i ∈ {3, . . . ,m}

where▽2φ(ui, ti) is defined as in [16] withui = qi − pi. Notice that the Hessian
is block-diagonal and separable. This differs from the nominal Hessian form, which
features a dense row and column corresponding tot1. This is evident by observing
the upper left quadrant (defined byH) of the KKT system presented in Figure 1
(left).

Similarly, we can eliminate the dense columns and rows inA (andAT ) by intro-
ducing2(m − 2), dj variables along with their associated4(m − 3) equality con-
straints. Doing so allows us to rewrite (1) as

qxi − dxj =
sxi

‖ s2 ‖

(

dxj+1 − dxj
)

−
s
y
i

‖ s2 ‖

(

d
y
j+1 − d

y
j

)

(8)

q
y
i − d

y
j =

sxi
‖ s2 ‖

(

d
y
j+1 − d

y
j

)

+
s
y
i

‖ s2 ‖

(

dxj+1 − dxj
)

(9)

for i = 3, . . . ,m, andj = 2(i−3)+1. By reformulating the linear shape constraints
in this fashion, we are now able to constructA as apseudo-bandedsystem. We say
pseudo-banded because the matrix is non-square but features a band-like structure.

We now define the nominal form of the linear constraint matrix,A. We begin by
defining the constraints associated withq1 andq2 as follows:

̺1 , qx1 = dx1

̺2 , q
y
1 = d

y
1

̺3 , t1 = t2

̺4 , qx2 = dx2

̺5 , q
y
2 = d

y
2

Similarly, for3 ≤ i ≤ (m− 1), we define the constraints associated withqi as:
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ϕi1 , qxi − dxj = β1

(

dxj+1 − dxj
)

− β2

(

d
y
j+1 − d

y
j

)

ϕi2 , q
y
i − d

y
j = β1

(

d
y
j+1 − d

y
j

)

+ β2

(

dxj+1 − dxj
)

ϕi3 , ti = ti−1

ϕi4 , dxj+2 = dxj

ϕi5 , d
y
j+2 = d

y
j

ϕi6 , dxj+3 = dxj+1

ϕi7 , d
y
j+3 = d

y
j+1

whereβ1 =
sx

i

‖s2‖
, β2 =

s
y

i

‖s2‖
, andj is as previously defined.

Finally, we associateqm with the remaining three constraints:

ϕm1
, qxm − dxj = β1

(

dxj+1 − dxj
)

− β2

(

d
y
j+1 − d

y
j

)

ϕm2
, qym − d

y
j = β1

(

d
y
j+1 − d

y
j

)

+ β2

(

dxj+1 − dxj
)

ϕm3
, tm = tm−1

whereβ1 =
sx

m

‖s2‖
, β2 =

sy
m

‖s2‖
, andj = 2(m− 3) + 1.

Given these definitions, we define the following nominal row permutation for the
linear constraint (coefficient) matrixA as:

[

ϑT ,κT1 , . . . ,κ
T
(m−1), ς

T
]T

(10)

ϑ =













̺1

̺2

̺3

̺4

̺5













κi =





















ϕ(i+2)1

ϕ(i+2)2

ϕ(i+2)3

ϕ(i+2)4

ϕ(i+2)5

ϕ(i+2)6

ϕ(i+2)7





















ς =





ϕm1

ϕm2

ϕm3





Notice that all of the primal constraints defined in (4) have been included inA.
Given the definitions ofA andH , the banded KKT system can now be con-

structed. Symmetrically applying the permutation that yields the following KKT
system solution vector ordering:

[

λT , ξT1 , . . . , ξ
T
(m−3), χ

T
]T

(11)
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λ =























δq1
δt1
w1

...
w5

δq2
δt2























ξi =























δd2(i−1)+1

δd2(i−1)+2

w6+7(i−1)

...
w12+7(i−1)

δq(i+2)

δt(i+2)























χ =





















δd2m−5

δd2m−4

w7m−15

w7m−14

w7m−13

δqm
δtm





















produces a mono-banded system with total bandwidthσ ≤ 17. Notice that permuting
the KKT system in this way preserves symmetry. As such, its upper bandwidth,bu,
is equal to its lower bandwidth,bl (both having a value of8).

In Figure 1 (center), we show the standard form KKT system constructed from
the Hessian given by (7) and the linear constraints given in (4). The constraints (ap-
pearing in the lower-left quadrant) are permuted to correspond with (10). Notice that
A (andAT ), in its nominal form, resembles a banded system. Taking theKKT sys-
tem in this form and symmetrically permuting its rows and columns according to
(11) yields the mono-banded system appearing in Figure 1 (right). The system cor-
responds to a team of 25 agents dispersed inSE(2). It can now be efficiently solved
in O(m) using a band-diagonalLU -based solver [20].

4.3 Complexity of the Shape Problem in Practice

In the previous section, we proved that the KKT system for ourmotion planning
problem can be solved inO(m) operations. We now show empirically that this en-
ables the SOCP to be solved inO(m logm) operations in practice.

Experimental Setup: In order to quantify the performance of this approach, 10,000
instances of the motion planning problem were solved using an implementation of
the barrier algorithm for SOCPs outlined in [5]. Values ofm were considered be-
tween 10 and 1000 using a step size of 10. For each value ofm, a total of 100
random shape SOCPs were generated for solving. This yieldeda total of 10,000 ran-
dom problem instances. Of those instances, one problem could not be solved due to
an ill-conditioned KKT system. The validity of our implementation was established
by comparing obtained results against those of the Mosek industrial solver [17].

Outer Iteration Complexity: In order to characterize the algorithm’s complexity,
we consider the total number of Newton iterations required to reach optimality. In
[5], it is shown that the total number of barrier iterations grows with logm, and the
number of Newton iterations per barrier iteration grows withm. As such, a conserv-
ative bound ofO(m logm) can be placed on the total number of Newton iterations.
However, our empirical results show that the number of Newton iterations required
per barrier iteration remains constant, resulting in a total number of iterations that
grows asO(logm) in practice.

Figure 2 (left) shows the mean number of Newton iterations required per barrier
iteration. We see that the number essentially remains constant form ' 50. The
tightness of the distributions suggests the number of iterations will be≈ 4, regardless
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Fig. 2. (Left) The mean number of Newton iterations per barrier iteration and BTLS iterations
per Newton iteration as a function ofm. Error bars signify a single standard deviation for
each sample set. (Right) The mean total number of Newton iterations required to reduce the
duality gap to within10−4 of optimality. These indicate a linear per-iteration complexity, with
an iteration complexity ofO(log m) for a total expected complexity ofO(m log m).

of the value ofm. Given this result and noting that the barrier algorithm terminates
afterO(logm) steps [5], we see that a better estimate for the total number of Newton
iterations required to solve the motion planning problem isO(logm) in practice.
This is corroborated by our empirical results shown in Figure 2 (right).

Per-Iteration Complexity: Since Equality-constrained Newton’s Method (ENM) is
employed, three main steps define the per-iteration complexity: 1) Solving the KKT
system, 2) Computing the Newton Decrement and 3) Performinga Back-tracking
Line Search (BTLS). We have shown previously that the KKT system can be solved
in O(m) operations. For computing the Newton decrement, recall that the relaxed
problem yields a block-diagonal, separable Hessian. Givenknowledge of the block-
width, it is trivial to exploit this information in order to yield anO(m) matrix-vector
multiplication routine.

The final step is determining the complexity associated withusing BTLS to com-
pute the desired step length. From the definition of BTLS (see[5]), the number of
iterations per Newton iteration is not obvious (as a function of m) since it largely
depends on the objective function definition. However, eachBTLS iteration corre-
sponds to vector addition and evaluating the gradient, which can trivially be done in
O(m) time. Furthermore, Figure 2 (left) indicates that the mean number of BTLS
iterations executed per Newton iteration isless than 1 for all considered values of
m. This implies that a unit step size typically provides a sufficient decrease that ul-
timately satisfies Wolfe’s condition. Considering the distributions (indicated via the
single standard deviation bars), we can expect each Newton iteration to require only
one or two BTLS iterations.

These empirical results, in conjunction with our previous analysis, suggests that
the per-iteration complexity grows linearly withm. Thus, solving the SOCP for our
centralized motion planning strategy will typically require onlyO(m logm) basic
operations in practice.
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5 A Computationally Distributed Approach

Our centralized solution features both a band-diagonal linear system as well as a
separable objective function. We shall leverage these characteristics to distribute the
computational workload evenly across the network. The resultingO(logm) expected
per-node workload should enable our approach to be employedby a significantly less
sophisticated class of processors, or to significantly larger-scale networks. We now
define a hierarchical, cluster-based architecture for achieving this objective.

5.1 Architectural Overview

Our paradigm solves convex optimization problems in the context of a hierarchical
cluster-based network paradigm under the direction of someroot node(s). Theroot
is responsible for orchestrating the solve process; thus, it maintains a global state
reflecting the status of the distributed computation. It is responsible for performing
such tasks as initializing the network and determining whenthe solve process is
complete. Although theroot maintains a global perspective per se, its data view is
primarily limited to that which affects the computation of its associated decision
variables. The only exception is when it requests data from the network to determine
the next state in the IPM solve process. For instance, when the root issues a request
for Newton decrement data.

At the root’s disposal are the remaining nodes in the network, which we term
thesecondarypeers. These nodes are consideredsecondary, because they serve only
as a distributed memory pool and a computational engine for the root during the
solve process; individually, they lack a global view of the solver and only manage
data relevant to their computations. They wait until a data request is received that
originates from theroot or some neighboring clusterhead before transitioning intoa
state of distributed computation.

To reduce the communication overhead experienced at any node, we define the
architecture to have a hierarchical scheme based upon network clusters. The role of
clusterheads is to ensure that each request of theroot is satisfied at the lowest level.
Sub-nodes treat their clusterhead as a local accumulator and forward the requested
information to that node where it is aggregated before beingpassed up the hierarchy,
ultimately to theroot. The result is that theroot (and all clusterheads) only need to
send a constant number of messages with each data request.

5.2 Distributing and Solving the KKT System

Given the objective function and Hessian are separable, implementing a distributed
Newton decrement or BTLS computation reduces to having eachnode pass its con-
tribution to the greater value up the cluster hierarchy at request. For this reason, along
with the fact that the per-iteration complexity of ENM is largely defined by solving
the KKT system, we focus our discussion on distributing theLU solver. As will be
seen, we can effectively distribute the process while providing per-node message,
computation, and storage complexities ofO(1).



Efficient Motion Planning Strategies for Large-scale Sensor Networks 11

To properly distribute the KKT system,K ∈ R
y×y, amongm nodes in a WSN,

we make the assumption that the system is band-diagonal withrespective upper and
lower bandwidths ofbu andbl. Additionally, we assume the matrix is represented
in its equivalent compact form,Kc, whereKc ∈ R

y×(bl+bu+1) [20]. We denote the
solution vector or right-hand-side vector of the KKT systemasb, whereb ∈ R

y.

Fig. 3. A non-zero dot-plot illustrating the decomposition of the compact KKT (i.e.Kc) sys-
tem for a configuration of 5 nodes inSE(2) solving the total distance metric. For this problem,
bl = bu = 7. Notice that the middle(m − 3) nodes (i.e.n3 andn4) are assigned sub-blocks
with identical structure.

Adopting this representation forK, we adapt theLU -based solver with partial
pivoting outlined in [20]. Distributing this algorithm, webegin by assigning theith

node,ni, a sub-block,Ki
c, of Kc. Eachni also manages a sub-vector,bi, of b. The

sub-vector contains the values corresponding to the equations contained inKi
c. To

illustrate this decomposition, we provide Figure 3, which shows the distribution of
Kc for a team of 5 nodes inSE(2). Given the dependencies between the equations
in the linear system, devising a completely concurrent solution is not feasible. Thus,
we assume the decomposition and subsequent solves are done one node at a time in a
pass-the-bucketfashion, where nodeni decomposesKi

c and then hands the process
off to noden(i+1). This process continues iteratively until decomposition is com-
plete. Both the forward substitution and backward substitution phases are conducted
in a similar manner.

Decomposition:During the decomposition phase, the algorithm employs partial piv-
oting by searching at mostbl sub-diagonal elements in order to identify one with
greater magnitude. This implies that a node in our WSN that isperforming its re-
spective decomposition may only need information pertaining to at mostbl rows,
which may be buffered at one or more peers. In the worst case scenario, where each
node only manages a single row, nodeni may have to query up tobl of its peers
(particularly, it may have to contact nodesn(i+1), . . . , n(i+bl)). With this result in
mind, and definingψ(i) as the number of peers nodeni has to contact, we offer the
following theorem:
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Theorem 1.Let i ∈ {1, . . . ,m} and letKj
c ∈ R

uj×(bl+bu+1), uj > 0 for j =
1, . . . ,m. Defineψ(i) as a mapping from the node index/idi to the number of nodes
that have to be contacted byni during the decomposition of sub-blockKi

c. Given
this definition and these assumptions, the following holds:

ψ(i) ≤ φ(bl, u1, . . . , um) =













bl
(

min
i∈{1,...,m}

ui

)













Proof. By contradiction.
Assumeψ(i) > φ(bl, u1, . . . , um). Choosingui = 1, ∀i ∈ {1, . . . ,m}, we see:

ψ(i) >

⌈

bl

1

⌉

= bl

However, it must hold thatψ(i) ≤ bl, sinceni will only ever require data aboutbl
rows during the decomposition ofKi

c. ⊥

To illustrate this result, consider Figure 3 again. Based onthe assignment for our
shape problem, we see that all nodes in the network except forn1 (which will only
require communicating with two other nodes) will require communicating with at
most a single node in order to successfully complete decomposition.

As decomposition progresses, nodeni iteratively constructs a permutation vector,
pi. Observing the algorithm, it is evident that the permutation value assigned to the
jth position ofpi will be no more than(j + bl). This fact becomes important when
forward substitution is started, because it implies that the solving node will have to
communicate with at mostφ peers to resolve the values ofbi during this phase.

Onceni has decomposed its sub-block, it notifies each of theψ(i) nodes (i.e.
nodesn(i+1), . . . , n(i+ψ(i))) from which it acquired row information, before handing
off the decomposition process. The content of each message is the modified row(s)
and the adjusted permutation vectors corresponding to the changesni made with
respect to row data each peer provided. Each peer updates therows of its sub-block as
well as the corresponding elements inpi, before the process is handed off ton(i+1).

Forward Substitution: Similar to the decomposition phase, the forward substitu-
tion step is done in an iterative manner. In order to successfully solve its sub-block,
ni requires information from each of its supportingψ(i) peers. These nodes must
provide the corresponding rows that may be required byni’s forward substitution as
well as any relevant components of their respectiveb sub-vectors. Upon completion,
ni sends a message to each of the peers with updated values for their respectiveb
sub-vectors. It concludes by handing off the process ton(i+1).

Backward Substitution: The backward substitution phase begins whennm com-
pletes the forward solve on its sub-block,Km

c . Unlike the forward substitution phase,
this phase requires a node to communicate with at most2φ peers. The additional mes-
saging is introduced via the upper triangular factor havinga bandwidth constrained
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no longer bybu. As a result of row permutations, its bandwidth is instead bounded
by (bu + bl + 1) [15]. To complete the backward substitution phase,ni simply must
acquire the row information andb vector data from said peers (all of which have
already completed their respective backward substitutions). The process completes
when the node managingK1

c solves its sub-block.

LU -solver Complexity: For simplicity, the assumption is made wheneverni re-
quests row or vector data from any of its peers, the data is received in a single mes-
sage. This assumption is reasonable, because the amount of row and vector data
that has to be shared between any two nodes is a function ofbu andbl, which are
both independent of configuration size. As such, the number of messages required to
transmit said data is also constant. Noting that data is delivered upon request, we see
that the total number of messages sent byni is:

O(2ψ(i) + 2ψ(i) + 4ψ(i)) ≡ O(8φ) ≡ O(1) (12)

Since allm nodes sendO(1) messages during the solve, the total message com-
plexity for the distributedLU process isO(m). Furthermore, sinceni manages some
Ki
c (along withbi andpi) and row data received by as many asψ(i) peers, storage is

also bounded by a constant that is a function ofbl andbu. With O(logm) expected
iterations, this translates to a total ofO(m logm) messages in the overlay network.

5.3 Experimental Results

To demonstrate our approach, we implemented the distributed framework on a team
of six Sony Aibos and charged the team with transitioning to adelta formation. Each
Aibo was outfitted with a unique butterfly pattern [6] that wastracked via an over-
head camera system serving as an indoor “GPS”. Figure 4 (left) shows the initial

Fig. 4. (Left) An initial dispersion of 6 Aibos, along with overlaidlines/points mapping each
to its computed optimal position. (Right) The Aibos after reconfiguring to the desired delta
shape formation. All computations were done in a distributed fashion, with each dog being
responsible for computing its optimal position.

configuration, along with lines mapping each to its computedoptimal position. The
objective was to minimize the total distance traveled by theteam. Figure 4 (right)
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shows the Aibos after transitioning to the optimal shape configuration. All com-
putations were done in a distributed fashion, with each dog being responsible for
computing its objective position and local control inputs.

6 A Decentralized Hierarchical Approach

For our decentralized approach, we assume a hierarchical network design whereby
a small number ofleader nodes acting as exemplars solve the motion planning
problem. This allows the remainingfollower nodes to infer their objective positions
through local observations. Such a model is attractive to not only hierarchical net-
work architectures [12], but also models where minimizing data communication is a
primary objective [1, 2].

For our decentralized approach, we make the following assumptions.

1. Each node knows the objective shape iconS for the network.
2. Leader nodes (individually or collectively) know the current network shape.
3. Follower nodes haveno knowledgeof the current network shape.
4. Follower nodes can identify their neighbors and measure their relativeposition.
5. Follower nodes can observe therelativeheading of their immediate neigbors.

6.1 An O(1) Decentralized Solution

Key to this approach is the realization that although the optimization problem in-
cludes2m decision variables (corresponding to them robot positions), the feasible
set is constrained to the equivalence class of the full set ofsimilarity transformations
for the objective formation shape. More concisely, there are only 4 degrees of free-
dom in determining a node’s objective position on the plane which correspond to the
translation, rotation, and scale of the objective shape.

As the leader nodes have knowledge of the current and objective shapes, they can
solve for their objective positions using either of the approaches outlined in Sections
4-5. Follower nodes have more constrained knowlege, and as aresult are incapable
of estimating their objective positions. However, an observation of the headingωl
of leaderl introduces an additional constraint on the objective shapeof the form
(ql−pl)

T (sinωl−cosω)l = 0 where all measurements are relative to the follower’s
coordinate frameF . If the headings of 4 leader nodes can be observed, the motion
planning problem becomes fully constrained via the equality constraints. Perhaps
more significant is that the problem can now be solved by the followe node in decen-
tralized fashion, and inO(1) time regardless of formation size.

To see this, recall that in addition to this heading constraint, each robot imposes
two additional equality constraints on the objective network shape as shown in Equa-
tion 1. With 4 leader nodes and 1 follower node, this corresponds to a total of 4 bear-
ing and 10 shape constraints over 14 decision variables. However, noting that the
shape index (not coordinate) assignments are arbitrary, the follower node can desig-
nate itself as the first index corresponding to the 3-tuple{p1, q1, s1} and associate
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one of the observed leaders with{p2, q2, s2}. This eliminates the associated shape
constraints for these two nodes, and reduces the set to

(ql − pl)
T (sinωl,− cosωl) = 0, l = 2 . . . 5

‖ s2 − s1 ‖ (qxl − qx1 ) − (sxl , s
y
l )
T (q2 − q1) = 0, l = 3 . . . 5

‖ s2 − s1 ‖ (qyl − q
y
1 ) − (syl , s

x
l )
T (q2 − q1) = 0, l = 3 . . . 5

(13)

wherel ∈ {2 . . .5} now corresponds to the set of observed leaders. The constraint
set is linear inq, and can be written in the formAq̂ = b, where the solution vector
q̂ ⊂ q is the objective positions of follower and 4 observed leadernodes. It is a
linear system of 10 equations in 10 unknowns, and is readily solvable via Gaussian
elimination techniques.

Thus, each follower node can solve for its objective position (as well as its neigh-
bors) so long as therelativeposition and headings of 4 neighbors can be observed.
This is akin to biological systems (e.g.schools of fish, flocks of birds,etc.) capable
of complex formation changes using only local sensor feedback. Furthermore, the
solution is obtained from solving anO(1) sized(10×10) linear system of equations
- regardless of the number of nodes in the network. The assumption of knowledge of
the objective shape does however requireO(m) storage for each node.

It should also be noted that after solving for its objective position, each follower
is “promoted” to leader status. As it migrates to its objective position, its heading can
be observed by other follower nodes to solve their own decentralized problem. So,
while in practice the actual number of leader nodes will be a function of the sensor
network topology, in theory only 4 arenecessary. This is illustrated below.

6.2 Simulation Results

Figure 5 models the intial deployment of a sensor network. The objective config-
uration was a{4,4} tessellation on the plane with a tiling size of 10 meters. Un-
fortunately, positional errors introduced during deployment - modeled as Gaussian
noise∼ N(0, σx=σy =7.5) - result in a significantly different geometry (Figure
5a). To compensate for these errors, four leader nodes (red circles) solve the motion
planning problem, and begin migrating to their objective positions. Relative sensor
measurements allow the remaining follower nodes (blue triangles) to solve for their
objective positions in decentralized fashion. The propagation of decentralized solu-
tions through the network is reflected in Figure 5b. The decentralized trajectories that
minimize the maximum distance that any node must travel, andthe optimal network
configuration achieving the desired shape are shown in Figures 5c-d. It was assumed
that the sensing range of each node was 25 meters.

Note that in this case, the orientation of the shape was not constrained. If a fixed
orientation was desired (e.g., orthogonal to thex−y axes), the number of degrees
of freedom would be reduced to 3 - as would the number of observations required
to solve the decentralized problem. Fixing the scale would simplify the problem
even further, requiring only 2 observations for each decentralized node solution. We
should also emphasize that although in this example the decentralized solution was
able to propagate through the entire network using the minimum number of leader
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Fig. 5. Decentralized Motion Planning: (a) The initial network configuration with leader (red
circle) and follower (blue triangle) nodes. (b) Evolution of the decentralized solution. (c) Node
trajectories (d) Final network configuration achieving thedesired{4,4} tessellation.

nodes, this willnot typically be the case. More than likely, a small number of leader
nodes will be associated with disjoint clusters in the network.

7 Discussion

In this paper, we developed a set of motion planning strategies suitable for large-scale
sensor networks. These solve the problem of reconfiguring the network to a new
shape while minimizing either the total distance traveled by the nodes or the maxi-
mum distance traveled by any node. The centralized approachruns inO(m logm)
time in practice through banding the KKT system. The distributed approach reduces
the expected per node workload toO(logm) in exchange forO(logm) messages
per node in the overlay network. Finally, we derived a decentralized, hierarchical ap-
proach whereby follower nodes are able to solve for their objective positions inO(1)
time from observing the headings of a small number of leader nodes.

We are currently extending these results to a more general motion planning
framework. To achieve this, issues such as collision/obstacle avoidance will have
to be addressed. The latter is a particularly challenging task, as the presence of ob-
stacles introduces concave constraints on the feasible set, and the resulting problem
is no longer solvable as a SOCP. We hope that randomization and convex restriction
techniques [9] will still allow the problem to be solved for real-time applications.
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