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Summary. In this paper, we develop a suite of motion planning strateguitable for large-
scale sensor networks. These solve the problem of recoinfigtive network to a new shape
while minimizing either the total distance traveled by trees or the maximum distance
traveled by any node. Three network paradigms are inveéstigaentralized, computation-
ally distributed, and decentralized. For the centralizasec optimal solutions are obtained
in O(mlogm) time in practice using a logarithmic-barrier method. Keythis complexity

is transforming the associated Karush-Kuhn-Tucker (KKB}nix to a mono-banded system
solvable inO(m) time. These results are then extended to a distributed apiprthat allows
the computation to be evenly partitioned acrosstheodes in exchange f&?(m log m) mes-
sages in the overlay network. Finally, we offer a decerzealj hierarchical approach whereby
follower nodes are able to solve for their objective posision O(1) time from observing
the headings of a small number (2-4) of leader nodes. Thikiiista biological systemsa(g.
schools of fish, flocks of birdgtc) capable of complex formation changes using only local
sensor feedback. We expect these results will prove usefektiending the mission life of
large-scale mobile sensor networks.

1 Introduction

Consider the initial deployment of a wireless sensor netwWVSN). Ideally, the
WSN is fully connected with a topology to facilitate coveeagensing, localization,
and data routing. Unfortunately, since deployment mettoaaisvary from aerial to
manual, the initial configuration could be far from ideal. &sesult, the WSN may
be congested, disconnected, and incapable of localizédf ith the environment.
Node failures in established networks could have similfaot$. Such limitations in
static networks have lead to an increased research iniatestnproving network
efficiency via nodes that support at least limited mobil8} [

Also of fundamental importance to WSN research is resouaeagement, and
perhaps most importantly power managment. Energy consomigtthe most limit-
ing factor in the use of wireless sensor networks, as selifécis limited by onboard
battery capacity. This constraint has driven researchpateer sensitive routing pro-
tocols, sleeping protocols, and even network architestimeminimizing data traffic
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[1,2,12]. It would only seem natural then to develop motitanping strategies with
similar performance objectives.

In this vein, we propose a set ofotion planning strategiethat allow a mobile
network to reconfigure to a new geometry while minimizing tb&al distance the
nodes must travel, or the maximum distance that any node travst. We believe
a suite of strategies is critical due to the proliferatiomoh-standard sensor net-
work architectures which are often implementation speciiie such, we provide
centralized, computationally distributed, and decertteal approaches suitable for
use with large-scale sensor network architectures. Eaabnigutationally efficient,
and without onerous communication overhead. We expect ttessiIts will be useful
for extending the mission life of large-scale mobile netkgor

2 Related Work

Changes to the environment, mission objectives, and ndtledfs are all factors
that can contribute to need for reconfiguring a sensor nétvitowever, tolopology
changes can also be driven by performance objectives. Foongbe, Cortest al
applied optimization based techniques to motion plannorgrhproving network
coverage [8]. Similarly, Zhang and Sukhatme investigatgdgimotion to control
node density [23]. The work of Hidaket al investigated deployment strategies for
optimizing localization performance [18], while the work Butler and Rus was
motivated by event monitoring using constrained resouies

There has also been extensive research in “collective”trofmtion within the
control community. Fedden&t al. applied decentralized optimization based control
to solve a variety of multi-robot problems [13]. Also wortleting is work in the
areas of formation control [24], conflict resolution [19hdacooperatice control [4].
A recent survey/tutorial outlining additional relevantnkavithin each of these areas
can be found in [14].

In contrast to these efforts, the focus of our work is effitiemtion plan-
ning strategies suitable for large-scale networks. Ginéral and objective network
geometries, we determine how to optimally reposition eaitterin order to achieve
the objective configuration while minimizing the distantest the nodes must travel.
The objective positions can then be fed to appropriate oblets to drive the nodes
to their desired destinations. When servo/actuator castsrthte the power budget,
such approaches can dramatically improve the network amd#fie. We also em-
phasize applicability to large-scale systems. Our metkodke well in terms of both
computational and message complexity to ensure that satyasyained through ef-
ficient motion planning are not compromised by excessivepgation or routing
requirements. Finally, we provide centralized, compatally distributed, and de-
centralized models to support the diverse array of WSN tachires.
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3 The Motion Planning Problem

In developing our motion planning strategies, we leveragelts from our previous
work [22] where it was shown that tiemapeof a robot formation could be expressed
as the set of linear equality constraints
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where@ = [q1, ..., qm]T € R™*2 denote the concatenated coordinates of the ob-
jective formation shape§ = [sq,..., sm]T € R™*2 represents an instance or an
iconof our objective shape, and tlie, y) superscripts denote the specific Euclidean
coordinate.

These constraints define the equivalence class of the fudf semilarity transfor-
mations of the formation. Thus, if an objective sha@pand an iconS satisfy these
constraints, the two shapes are equivalent under the Eaclidimilarity transfor-
mations of translation, rotation and scaling. This is aitraal definition of shape
employed in statistical shape analysis [11]. So, given &@rairformation position
P=1p,... ,pm]T € R™*2  and an objective shape ic¢h the problem becomes
finding the set of objective positiorig ~ S such that

1. max || ¢; — p; || is minimized fori = 1,...,m OR

k
2. > |l ¢i — pi || is minimized.
i=1

In other words, if the network were given an objective i&rit must determine the
objective positions for each node that minimize the maxindistance or the total
distance the nodes must travel, and where the final sapequivalent tas.

Since the constraints are linear@h the problems can be modeled as the respec-
tive second-order cone programs (SOCPs)

k
min min Y t;
q,t1 ot =1 (2)
st || @i —pi[[2< t, st [ @ —pil2<ti
Ag=0 Ag=0
fori = 1,...,m and where thed matrix corresponds to the constraint set defined

by (1). Since the SOCPs are convex, a local minimum correggptma global min-
imum. This allows optimal solutions to be obtained througbasety of methods
such as descent techniques or (more efficiently) by intgraant methods (IPMs).
While primal-dual IPMs represent perhaps the most effiadégarithms, we employ
a simpler barrier IPM. It provides good computational coewfily in practice, and as
we shall see lends itself to a computationally distributaglementation.

Finally, we should note that in the interest of brevity theules presented here
focus on the SOCP for thmini-maxdistance metric as defined in Equation 2 (left).
Similar results for the total distance metric can be founthim extended technical
report version of this paper [10].
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4 A Centralized Approach

Centralized approaches are appropriate for hierarchetalark architecures such as
the TENET [12]. In this paradigm, more powerful “master” escexecute all com-

putationally complex algorithms, while the small-fornefar (SFF) motes merely

provide data input. Thus for the motion planning problemsteanodes acting as
cluster heads would calculate the objective positions Hier ¢cluster and commu-

nicate these to the SFF nodes. While simple in design, thardetey requires that

algorithms scale scale well computationally with the sizthe network.

To address this, we solve the motion planning problem by tapphe logarith-
mic penalty-barrier approach [5]. Like other IPMs, the cdewjty is largely defined
by solving a linear system of equations. In this case, Etyuabnstrained Newton'’s
method (ENM) is used for internal minimization and the linegstem is in KKT
form. We show that by reformulating the SOCP, we can band tK& Knatrix to
solve the system i (m) time via algorithms that exploit knowledge of matrix band-
width. Furthermore, we show empirically that the total niemdf iterations required
to reduce the duality gap to a desired tolerana@ ({®gm). The result is a simple
IPM that in practice solves the shape problems in o€den logm) time.

4.1 Reformulating the Shape Problems

The original shape problem can be restated in a relaxed foitaibde for solving via

the barrier approach. Conversion requires augmentingdjeetve function given in

(2) with the log-barrier terms corresponding to the prolieconic constraints. The
problem is restated in its equivalent form as follows:

m
min 7t; — > log (2 — ul u;)

q;t1 i=1
s.t. Ag=10 (3)
U; = G — Pi

For the sake of clarity, the linear constraint= ¢; — p; is included; however, it
is assumed that it will be eliminated by substitution upopliementation.

4.2 Banding the KKT System

Noting that the KKT system for the shape problem is symmétdefinite, we em-
ploy Gaussian elimination with non-symmetric partial gisig. The performance of
Gaussian elimination suffers significantly due to fill-in @vhthe linear system in
question features dense rows and/or columns [21]. Obggthinnon-zero dot-plot
of the nominal KKT formulation given in Figure 1 (left), it Bvident that (3) does
not facilitate efficient solving due to the dense featuresoAr objective is to make
the KKT system banded so that it can be solve@{m:) [20], we restate the problem
in the following equivalent form:
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Fig. 1. The dot plots of the KKT systems for the unregulated oriént#scale shape problem.
The pattern corresponds to a system of 25 nodé&?in(Left) KKT system sparsity struc-
ture for the maximum distance metric problem. (Center) Aegted KKT system sparsity
structure. (Right) The banded KKT system with a lower andeuggandwidth of 8.

in = St — 3 log (12 — ulu;
min 7 3t — 2 log (8 — i wi)

i=1 i=1

s.t. Ag=0

ti+1:ti, i:l,...,m—l

dgi_;,_l :dgi_l, 1= 1,...,m—3 (4)

dg(iJrl):in, i=1,....m—3

U; = qi — Pi, i=1,...,m

di = q

da = qo

Observe that the objective has changed from (3); howevesee¢hat both forms
are equivalent since:

— t-:—Et:(—)mt:Tt 5
milz m 11 m ! ! ()

The first equality holds due to the equality constraints gxdiaant; .

Given this formulation, our claim is that the system can bderzanded. In order
to show the validity of this statement, we begin by defining ttominal solution
vector for the KKT matrix. It is given as follows:

T
{5771T7 677;; 6K/{7 ey 6'%%;77,72)) IU’T:| (6)
8qi Oda(i—1)+1 w1
ons = [5;} Ok = | 0da(i—1)42 | B =
0M(i+2) W7m—13

and thed variables correspond to the primal Newton step componessisciated
with each of the respective system variables.
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Given the new objective function and assuming the shapelgrod solution
vector permutation corresponds with the permutation yigld6), the Hessian for
our problem is now:

o1 ... 0
(2>

H=|: 3 : (7
0 s | "/}m

1/11' = v2¢(uiati>a 1€ {1a2}

L O4xa Oaxs :
P = Ot V20(us, ) | i€q{3,...,m}

wherev2¢(u;, t;) is defined as in [16] withi; = ¢; — p;. Notice that the Hessian
is block-diagonal and separable. This differs from the mahiHessian form, which
features a dense row and column corresponding.tdhis is evident by observing
the upper left quadrant (defined @) of the KKT system presented in Figure 1
(left).

Similarly, we can eliminate the dense columns and rows {and A7) by intro-
ducing2(m — 2), d; variables along with their associaté@n» — 3) equality con-
straints. Doing so allows us to rewrite (1) as

x Yy

1 , SZ T SZ
A (df41 — df) T (@41 = d) (8)
¢ —d¥ = S (%, —d¥) + s (dfy —d?) (9)
P s T s T

fori =3,...,m,and;j = 2(i— 3) + 1. By reformulating the linear shape constraints
in this fashion, we are now able to constructs apseudo-bandesystem. We say
pseudo-banded because the matrix is non-square but featbend-like structure.

We now define the nominal form of the linear constraint matfixWe begin by
defining the constraints associated wjthandgs as follows:

01 = qf =df
02 2 qf =df
035t =ty
o4 £ g5 =dj
05 £ gy = dj

Similarly, for3 < ¢ < (m — 1), we define the constraints associated withs:
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i £ af —dj = b1 (dfy —df) = Ba (df,, — dY)

=5 (d?Jrl - d?) + B2 (d?Jrl - d;)
ti =ti—1

(1>

:C

> 1>

Piy ]+2 -

A gy Y
Pis = d; j+2 d
WPig = 13 =y

P _derd —d

whereg; = ”Z—:” B2 = Hs 7» andj is as previously defined.
Finally, we associate,,, with the remaining three constraints:

Pmi = qvxnfd?F =f (djx’-H J) 62( j+1 di/)
Pmo éqmidyiﬁl( J+17dg)+62< j+17dj;)

A
Pms =

>

tm =tm-1

whereg; = ”i—g;” Be = H””, andj =2(m —3) + 1.
Given these definitions, we define the following nominal rewmutation for the
linear constraint (coefficient) matriA as:

T
P~ %(T;n_l), gT} (10)
cp(’i+2)1
01 P(i+2)2
02 P(i+2)3 Pmy
V= o3| 2 = Pli+2)s | S = | Pma
04 P(i+2)5 Pms
05 P(i+2)6
L P(i+2)7 |

Notice that all of the primal constraints defined i) flave been included iA.

Given the definitions ofdA and H, the banded KKT system can now be con-
structed. Symmetrically applying the permutation thatddethe following KKT
system solution vector ordering:

T
|:)‘Ta f{a e 7§(1;n73)5 XT (11)
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dq1 5d2(i—1)+1 1 [ 6domm—5 |
ot1 dda(i—1)+2 8o —a
w1 We47(i—1) Wrm—15
A= | &= : X = | Wrm-14
Ws W1247(i—1) Wrm-13
0q2 0q(it2) 0tm
i 2 i I (5t(i+2) ] L Otm,

produces a mono-banded system with total bandwidth17. Notice that permuting
the KKT system in this way preserves symmetry. As such, ifeapandwidthp,,,
is equal to its lower bandwidtl; (both having a value o).

In Figure 1 (center), we show the standard form KKT systenstracted from
the Hessian given by (7) and the linear constraints gived)nThe constraints (ap-
pearing in the lower-left quadrant) are permuted to cowadwith (10). Notice that
A (and A7), in its nominal form, resembles a banded system. TakindCHE sys-
tem in this form and symmetrically permuting its rows anduoohs according to
(11) yields the mono-banded system appearing in FigureghtjtiThe system cor-
responds to a team of 25 agents dispersetiAif2). It can now be efficiently solved
in O(m) using a band-diagon&lU-based solver [20].

4.3 Complexity of the Shape Problem in Practice

In the previous section, we proved that the KKT system for miation planning
problem can be solved i@(m) operations. We now show empirically that this en-
ables the SOCP to be solveda@r{m log m) operations in practice.

Experimental Setup: In order to quantify the performance of this approach, 10,00
instances of the motion planning problem were solved usingrglementation of
the barrier algorithm for SOCPs outlined in [5]. Valuesrofwere considered be-
tween 10 and 1000 using a step size of 10. For each value, & total of 100
random shape SOCPs were generated for solving. This yielt&dl of 10,000 ran-
dom problem instances. Of those instances, one problerd catlbe solved due to
an ill-conditioned KKT system. The validity of our implentation was established
by comparing obtained results against those of the Moselsinidl solver [17].

Outer Iteration Complexity: In order to characterize the algorithm’s complexity,
we consider the total number of Newton iterations requiceteich optimality. In
[5], it is shown that the total number of barrier iterations gsamith logm, and the
number of Newton iterations per barrier iteration growdwit. As such, a conserv-
ative bound ofO(m log m) can be placed on the total number of Newton iterations.
However, our empirical results show that the number of Neviterations required
per barrier iteration remains constant, resulting in al totenber of iterations that
grows a0 (logm) in practice.

Figure 2 (left) shows the mean number of Newton iteratiogsired per barrier
iteration. We see that the number essentially remains aoh&rm 2 50. The

~

tightness of the distributions suggests the number oftiterawill be~ 4, regardless
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Fig. 2. (Left) The mean number of Newton iterations per barriewitien and BTLS iterations
per Newton iteration as a function ef. Error bars signify a single standard deviation for
each sample set. (Right) The mean total number of Newtoatiters required to reduce the
duality gap to withinl0~* of optimality. These indicate a linear per-iteration coexty, with

an iteration complexity oD (log m) for a total expected complexity @@ (m logm).

of the value ofm. Given this result and noting that the barrier algorithnmiigiates
afterO(log m) steps [5], we see that a better estimate for the total nunfidéswton
iterations required to solve the motion planning problen®igog m) in practice.
This is corroborated by our empirical results shown in Fég2i(right).

Per-lteration Complexity: Since Equality-constrained Newton’s Method (ENM) is
employed, three main steps define the per-iteration contpldy Solving the KKT
system, 2) Computing the Newton Decrement and 3) PerformiBgck-tracking
Line Search (BTLS). We have shown previously that the KKTiesyscan be solved
in O(m) operations. For computing the Newton decrement, recatlttiearelaxed
problem yields a block-diagonal, separable Hessian. Ginemvledge of the block-
width, it is trivial to exploit this information in order toigld anO(m) matrix-vector
multiplication routine.

The final step is determining the complexity associated ugihg BTLS to com-
pute the desired step length. From the definition of BTLS (S8e the number of
iterations per Newton iteration is not obvious (as a functidé m) since it largely
depends on the objective function definition. However, BthS iteration corre-
sponds to vector addition and evaluating the gradient, lwbén trivially be done in
O(m) time. Furthermore, Figure 2 (left) indicates that the meamber of BTLS
iterations executed per Newton iterationess than 1 for all considered values of
m. This implies that a unit step size typically provides a sigfit decrease that ul-
timately satisfies Wolfe's condition. Considering the disitions (indicated via the
single standard deviation bars), we can expect each Netei@tion to require only
one or two BTLS iterations.

These empirical results, in conjunction with our previonalgsis, suggests that
the per-iteration complexity grows linearly with. Thus, solving the SOCP for our
centralized motion planning strategy will typically recgionly O(m log m) basic
operations in practice.
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5 A Computationally Distributed Approach

Our centralized solution features both a band-diagonahlirsystem as well as a
separable objective function. We shall leverage theseackeristics to distribute the
computational workload evenly across the network. ThetiegLO (log m) expected
per-node workload should enable our approach to be employadignificantly less
sophisticated class of processors, or to significantlyelasgale networks. We now
define a hierarchical, cluster-based architecture forexirnj this objective.

5.1 Architectural Overview

Our paradigm solves convex optimization problems in thetexdrof a hierarchical
cluster-based network paradigm under the direction of smmenode(s). Theoot

is responsible for orchestrating the solve process; thiusaintains a global state
reflecting the status of the distributed computation. leisponsible for performing
such tasks as initializing the network and determining wttensolve process is
complete. Although theoot maintains a global perspective per se, its data view is
primarily limited to that which affects the computation ¢$ iassociated decision
variables. The only exception is when it requests data flemetwork to determine
the next state in the IPM solve process. For instance, wherotlt issues a request
for Newton decrement data.

At the root's disposal are the remaining nodes in the network, whichema t
thesecondanpeers. These nodes are consideseebndarybecause they serve only
as a distributed memory pool and a computational enginehi@rdot during the
solve process; individually, they lack a global view of tledver and only manage
data relevant to their computations. They wait until a datguest is received that
originates from theoot or some neighboring clusterhead before transitioninganto
state of distributed computation.

To reduce the communication overhead experienced at arg, meddefine the
architecture to have a hierarchical scheme based upon retiusters. The role of
clusterheads is to ensure that each request abibtds satisfied at the lowest level.
Sub-nodes treat their clusterhead as a local accumulatbfoaward the requested
information to that node where it is aggregated before bpasged up the hierarchy,
ultimately to theroot. The result is that theoot (and all clusterheads) only need to
send a constant number of messages with each data request.

5.2 Distributing and Solving the KKT System

Given the objective function and Hessian are separabldemmmnting a distributed
Newton decrement or BTLS computation reduces to having eadk pass its con-
tribution to the greater value up the cluster hierarchygiest. For this reason, along
with the fact that the per-iteration complexity of ENM isdaty defined by solving
the KKT system, we focus our discussion on distributing Hié solver. As will be
seen, we can effectively distribute the process while mliog per-node message,
computation, and storage complexitieg (1 ).



Efficient Motion Planning Strategies for Large-scale SeNstworks 11

To properly distribute the KKT systenf € R¥*¥, amongm nodes in a WSN,
we make the assumption that the system is band-diagonategtiective upper and
lower bandwidths ob,, andb;. Additionally, we assume the matrix is represented
in its equivalent compact forndy., wherek. € Rv*(:+b.+1) [20]. We denote the
solution vector or right-hand-side vector of the KKT systash, whereb € RY.

.| P

:; N3

- :.... .: N4

Ns

Fig. 3. A non-zero dot-plot illustrating the decomposition of tlmerpact KKT (i.e.K.) sys-
tem for a configuration of 5 nodes ¥ (2) solving the total distance metric. For this problem,
b = b, = 7. Notice that the middi¢m — 3) nodes (i.ens andn4) are assigned sub-blocks
with identical structure.

Adopting this representation fdk, we adapt the.U-based solver with partial
pivoting outlined in [20]. Distributing this algorithm, weegin by assigning th&"
node,n;, a sub-blockk¢, of K.. Eachn; also manages a sub-vectby, of b. The
sub-vector contains the values corresponding to the empgationtained ink:. To
illustrate this decomposition, we provide Figure 3, whitlows the distribution of
K. for a team of 5 nodes i§ E(2). Given the dependencies between the equations
in the linear system, devising a completely concurrenttemius not feasible. Thus,
we assume the decomposition and subsequent solves arertonede at a time in a
pass-the-buckdashion, where node; decompose#! and then hands the process
off to noden;;1). This process continues iteratively until decompositicom-
plete. Both the forward substitution and backward sulitituphases are conducted
in a similar manner.

Decomposition:During the decomposition phase, the algorithm employsadquit/-
oting by searching at mos${ sub-diagonal elements in order to identify one with
greater magnitude. This implies that a node in our WSN thaeigorming its re-
spective decomposition may only need information penmario at most; rows,
which may be buffered at one or more peers. In the worst caseso, where each
node only manages a single row, nademay have to query up to; of its peers
(particularly, it may have to contact nodeg 1), - - ., n(i+s,))- With this result in
mind, and defining) (i) as the number of peers nodehas to contact, we offer the
following theorem:
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Theorem 1.Leti € {1,...,m} and let K7 € Rux®lHbutl) . 5 0 for j =
1,...,m. Definey (i) as a mapping from the node index{itb the number of nodes
that have to be contacted by during the decomposition of sub-bloéki. Given
this definition and these assumptions, the following holds:

b

w(l) < ¢(bl7u17 ey ) =
< min uz>
i€{l,...,m}
Proof. By contradiction.
Assume)(i) > ¢(by,u1, ..., um). Choosingu; = 1,Vi € {1,...,m}, we see:

$(i) > m b

However, it must hold that (i) < b;, sincen; will only ever require data about;
rows during the decomposition &f?. |

To illustrate this result, consider Figure 3 again. Basetherassignment for our
shape problem, we see that all nodes in the network except; fewhich will only
require communicating with two other nodes) will requirercounicating with at
most a single node in order to successfully complete decsitipo.

As decomposition progresses, nadéteratively constructs a permutation vector,
p;. Observing the algorithm, it is evident that the permutatialue assigned to the
4" position ofp; will be no more thar(j + b;). This fact becomes important when
forward substitution is started, because it implies thatgblving node will have to
communicate with at most peers to resolve the valuesipfduring this phase.

Oncen; has decomposed its sub-block, it notifies each ofui@ nodes (i.e.
nodesi(;t1), - - - N(i+u(s))) fromwhich it acquired row information, before handing
off the decomposition process. The content of each messape modified row(s)
and the adjusted permutation vectors corresponding tolihagesn; made with
respect to row data each peer provided. Each peer updatesibef its sub-block as
well as the corresponding elementsin before the process is handed offig,, ;).

Forward Substitution: Similar to the decomposition phase, the forward substitu-
tion step is done in an iterative manner. In order to sucaéigsolve its sub-block,

n; requires information from each of its supportitigi) peers. These nodes must
provide the corresponding rows that may be required fg/forward substitution as
well as any relevant components of their respedtigeb-vectors. Upon completion,
n; sends a message to each of the peers with updated valuegiforetspectiveh
sub-vectors. It concludes by handing off the processg 9.

Backward Substitution: The backward substitution phase begins whgncom-

pletes the forward solve on its sub-bloék}". Unlike the forward substitution phase,
this phase requires a node to communicate with at thvbpeers. The additional mes-
saging is introduced via the upper triangular factor hardzandwidth constrained
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no longer byb,,. As a result of row permutations, its bandwidth is insteadrted
by (b, + b; + 1) [15]. To complete the backward substitution phasesimply must
acquire the row information antd vector data from said peers (all of which have
already completed their respective backward substitgjiorhe process completes
when the node managinfg! solves its sub-block.

LU-solver Complexity: For simplicity, the assumption is made whenexgrre-
quests row or vector data from any of its peers, the data &ved in a single mes-
sage. This assumption is reasonable, because the amounw @fnd vector data
that has to be shared between any two nodes is a functiép ahdb;, which are
both independent of configuration size. As such, the numimessages required to
transmit said data is also constant. Noting that data is@®ld upon request, we see
that the total number of messages sentbis:

O(2¢(i) + 2¢(i) + 4¥(i)) = O(8¢) = O(1) (12)

Since allm nodes send)(1) messages during the solve, the total message com-
plexity for the distributed.U process i$)(m). Furthermore, since; manages some
K (along withb; andp;) and row data received by as manyygg) peers, storage is
also bounded by a constant that is a functiom,adndb,,. With O(log m) expected
iterations, this translates to a total@{m log m) messages in the overlay network.

5.3 Experimental Results

To demonstrate our approach, we implemented the distdduaenework on a team
of six Sony Aibos and charged the team with transitioningdeléa formation. Each
Aibo was outfitted with a unique butterfly pattern [6] that weecked via an over-
head camera system serving as an indoor “GPS”. Figure 4 fleftws the initial

Fig. 4. (Left) An initial dispersion of 6 Aibos, along with overlalthes/points mapping each
to its computed optimal position. (Right) The Aibos aftecarfiguring to the desired delta
shape formation. All computations were done in a distriduteshion, with each dog being
responsible for computing its optimal position.

configuration, along with lines mapping each to its compuaigtiimal position. The
objective was to minimize the total distance traveled bytdem. Figure 4 (right)
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shows the Aibos after transitioning to the optimal shapefigoration. All com-
putations were done in a distributed fashion, with each deigdresponsible for
computing its objective position and local control inputs.

6 A Decentralized Hierarchical Approach

For our decentralized approach, we assume a hierarchitabriedesign whereby
a small number ofeader nodes acting as exemplars solve the motion planning
problem. This allows the remainirigllower nodes to infer their objective positions
through local observations. Such a model is attractive toonty hierarchical net-
work architectures [12], but also models where minimiziategdcommunication is a
primary objective [1, 2].

For our decentralized approach, we make the following apsioms.

Each node knows the objective shape isdior the network.

Leader nodes (individually or collectively) know the @t network shape.
Follower nodes haveo knowledgef the current network shape.

Follower nodes can identify their neighbors and measeie relative position.
Follower nodes can observe ttedative heading of their immediate neigbors.

agprpwNE

6.1 AnO(1) Decentralized Solution

Key to this approach is the realization that although thenupation problem in-
cludes2m decision variables (corresponding to therobot positions), the feasible
set is constrained to the equivalence class of the full seihafarity transformations
for the objective formation shape. More concisely, theeearly 4 degrees of free-
dom in determining a node’s objective position on the plah&tvcorrespond to the
translation, rotation, and scale of the objective shape.

As the leader nodes have knowledge of the current and olgestiapes, they can
solve for their objective positions using either of the aygmhes outlined in Sections
4-5. Follower nodes have more constrained knowlege, and@suét are incapable
of estimating their objective positions. However, an oliagon of the heading),
of leader! introduces an additional constraint on the objective stafpthe form
(@i —pi)T (sin w; — cosw); = 0 where all measurements are relative to the follower’s
coordinate frameF. If the headings of 4 leader nodes can be observed, the motion
planning problem becomes fully constrained via the equalinstraints. Perhaps
more significant is that the problem can now be solved by thewe node in decen-
tralized fashion, and i®(1) time regardless of formation size.

To see this, recall that in addition to this heading constraach robot imposes
two additional equality constraints on the objective netnghape as shown in Equa-
tion 1. With 4 leader nodes and 1 follower node, this corresigdo a total of 4 bear-
ing and 10 shape constraints over 14 decision variables.eMexvnoting that the
shape indexr{ot coordinate) assignments are arbitrary, the follower nashedesig-
nate itself as the first index corresponding to the 3-typle ¢1, s1} and associate
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one of the observed leaders wifps, ¢2, s2}. This eliminates the associated shape
constraints for these two nodes, and reduces the set to

(@ —p)T (sinw;, —coswy)) =0, [1=2...5
| s2—s1 |l (¢f —af) = (st,8)) (2 —q1) =0, 1=3...5  (13)
| s2—s1ll(¢f —af) = (s{s87) (@2 —q1) =0, 1=3...5

wherel € {2...5} now corresponds to the set of observed leaders. The cortstrai
set is linear ing, and can be written in the formg = b, where the solution vector

G C q is the objective positions of follower and 4 observed leauzdes. It is a
linear system of 10 equations in 10 unknowns, and is readliyable via Gaussian
elimination techniques.

Thus, each follower node can solve for its objective posifas well as its neigh-
bors) so long as theelative position and headings of 4 neighbors can be observed.
This is akin to biological systemeg.schools of fish, flocks of birdgtc) capable
of complex formation changes using only local sensor feekibeurthermore, the
solution is obtained from solving an(1) sized(10 x 10) linear system of equations
- regardless of the number of nodes in the network. The assomgf knowledge of
the objective shape does however reqadifen) storage for each node.

It should also be noted that after solving for its objectiesiion, each follower
is “promoted” to leader status. As it migrates to its objgposition, its heading can
be observed by other follower nodes to solve their own deakréd problem. So,
while in practice the actual number of leader nodes will barecfion of the sensor
network topology, in theory only 4 arecessaryThis is illustrated below.

6.2 Simulation Results

Figure 5 models the intial deployment of a sensor networle @bjective config-
uration was &4,4} tessellation on the plane with a tiling size of 10 meters. Un-
fortunately, positional errors introduced during depl@nh- modeled as Gaussian
noise~ N(0,0,=0,=7.5) - result in a significantly different geometry (Figure
5a). To compensate for these errors, four leader nodesifees} solve the motion
planning problem, and begin migrating to their objectivsifons. Relative sensor
measurements allow the remaining follower nodes (bluadtis) to solve for their
objective positions in decentralized fashion. The profiagaf decentralized solu-
tions through the network is reflected in Figure 5b. The deaémned trajectories that
minimize the maximum distance that any node must traveltlamadptimal network
configuration achieving the desired shape are shown in &gfae-d. It was assumed
that the sensing range of each node was 25 meters.

Note that in this case, the orientation of the shape was nwtained. If a fixed
orientation was desire (g, orthogonal to the: —y axes), the number of degrees
of freedom would be reduced to 3 - as would the number of olasiens required
to solve the decentralized problem. Fixing the scale woutthbfy the problem
even further, requiring only 2 observations for each deedined node solution. We
should also emphasize that although in this example thentledized solution was
able to propagate through the entire network using the mimmumber of leader
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Fig. 5. Decentralized Motion Planning: (a) The initial network &igaration with leader (red
circle) and follower (blue triangle) nodes. (b) Evolutidrtiwe decentralized solution. (c) Node
trajectories (d) Final network configuration achieving tlesired{4,4} tessellation.

nodes, this willnottypically be the case. More than likely, a small number oflkya
nodes will be associated with disjoint clusters in the nekwo

7 Discussion

In this paper, we developed a set of motion planning stragegjiitable for large-scale
sensor networks. These solve the problem of reconfiguriaghttwork to a new
shape while minimizing either the total distance travelgdh® nodes or the maxi-
mum distance traveled by any node. The centralized appnoarshin O(m log m)
time in practice through banding the KKT system. The distiell approach reduces
the expected per node workload @{log m) in exchange folO(log m) messages
per node in the overlay network. Finally, we derived a daedized, hierarchical ap-
proach whereby follower nodes are able to solve for theiectbje positions ir0(1)
time from observing the headings of a small number of leaddes.

We are currently extending these results to a more generibmplanning
framework. To achieve this, issues such as collision/alestavoidance will have
to be addressed. The latter is a particularly challengisk, tas the presence of ob-
stacles introduces concave constraints on the feasiblarsgthe resulting problem
is no longer solvable as a SOCP. We hope that randomizatibna@mvex restriction
techniques [9] will still allow the problem to be solved faad-time applications.
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