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Abstract— In this paper, we present an optimization frame-
work for target tracking with mobile robot teams. The target
tracking problem is modeled as a generic semidefinite program
(SDP). When paired with an appropriate objective function,
the solution to the resulting problem instance yields an optimal
robot configuration for target tracking at each time-step, while
guaranteeing target coverage (each target is tracked by at
least one robot) and maintaining network connectivity. Our
methodology is based on the graph theoretic result where
the second smallest eigenvalue of the interconnection graph
Laplacian matrix is a measure for the connectivity of the
graph. This formulation enables us to model agent-target
coverage and inter-agent communication constraints as linear-
matrix inequalities. We also show that when the communication
constraints can be relaxed, the resulting problem can be
reposed as a second-order cone program (SOCP) which can be
solved significantly more efficiently than its SDP counterpart.
Simulation results for a team of robots tracking multiple targets
are presented.

I. INTRODUCTION

We are interested in developing robot teams for use in
surveillance and monitoring applications. The idea of using
teams of small, inexpensive robotic agents to accomplish
various tasks is one that has gained increasing currency
as embedded processors and sensors become smaller, more
capable, and less expensive. To this point, much of the
work in multi-robot coordination has focused on control
and perception. It has generally been assumed that each
team member has the ability to communicate with any other
member with little to no consideration for the the quality of
the wireless communication network. Such an assumption,
although valid in certain situations, does not generally hold
- especially when considering the deployment of robot teams
within unstructured and unpredictable environments.

Our previous work in target tracking made similar simpli-
fying assumptions, as no constraints were placed on sensing
and communication ranges [1]. This allowed target coverage
and network connectivity requirements to be ignored in order
to simplify the optimization process. In this paper however,
we consider the problem of controlling the configuration
of a team of mobile agents for target trackingunder both
coverage and communication constraints. Our methodology
is based on the graph theoretic result where the second
smallest eigenvalue of the interconnection graph Laplacian
matrix is a measure for the connectivity of the graph. Recent
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system and control literature has shown that the maximiza-
tion of the second smallest eigenvalue for a state dependent
graph Laplacian matrix can be formulated as a semidefinite
program [2]. We apply these results to the target tracking
task and obtain a coordination strategy that maintains target
coverage and network connectivity while optimizing a given
objective function. Specifically, robot-target assignments and
inter-agent communication constraints are embedded invis-
ibility and networkgraphs, respectively. The target tracking
problem is then formulated as a SDP where the coverage
and communication constraints are modeled as linear-matrix
inequalities (LMI).

An important advantage of this formulation is that it is
agnostic to the quality metric being optimized. So long as
the objective function is convex, and can be expressed in
terms of linear, quadratic, or semidefinite constraints, the
resulting problem will be a SDP. The convexity of semidefi-
nite programs ensures the problem solution will be globally
optimal, and solvable in polynomial time in the number of
robots and targets. We also show that when communication
constraints must be relaxed to ensure target coverage (e.g.to
track diverging/evasive targets), the problem can be reposed
as a second order cone program (SOCP) that can be solved
significantly more efficiently than its SDP counterpart.

II. RELATED WORK

In the last several years, increased attention has been
focused on the effects of communication networks in multi-
agent teams. Earlier works generally assumed static com-
munication ranges, [3], and/or relied on coordination strate-
gies that require direct line-of-sight, [4]. In [5] and [6]
decentralized controllers were used for concurrently mov-
ing toward goal destinations while maintaining communica-
tion constraints by maintaining line-of-sight and assuming
static communication/sensor ranges respectively. Coordina-
tion strategies based on inter-agent signal strength include
[7], [8], and [9]. In [10], low-level reactive controllers capa-
ble of responding to changes in signal strength or estimated
available bandwidth are used to constrain robots’ movements
in surveillance and reconnaissance tasks. Although much of
the recent works have focused on the effects of communi-
cation maintenance on navigation, few have addressed the
issue of communication maintenance in tasks such as col-
laborative/collective localization and data fusion whereteam
connectivity is essential to the team’s ability to accomplish
the given task.

Previous works in collaborative target localization include
[11], [12], and [13] where strategies such as maintaining



visibility constraints and determining optimal sensor place-
ment are considered. More recent works include [14], where
distributed control strategies are used to minimize the amount
of time targets are outside of mobile agents’ sensor ranges.
In [15], artificial potential functions are used to coordinate
a team of mobile agents to track multiple moving targets.
[16] addresses the same problem by formulating it as two
sub-problems: target tracking for a single robot and on-line
motion coordination strategy for a team of robots. In [17],
the authors consider a motion coordination strategy to enable
a team of mobile sensors to detect multiple targets within
a given region. [18] analyses the accuracy of cooperative
localization and target tracking in a team of mobile robots
using an extended Kalman Filter formulation and provide
upper bounds for the position uncertainty obtained by the
team. In [19], a distributed control strategy is used maintain
a team of mobile agents in a mesh formation to enable
tracking of a discrete or diffused target. In [1], [20], [21],
the authors employ particle filters to minimize the expected
error in tracking mobile target(s) for a team of mobile robots
without the use of explicit switching rules.

Lastly, maximizing the second smallest eigenvalue of the
graph Laplacian for maintaining team connectivity has also
been considered in both [2] and [22]. The former is perhaps
most related to our work, where the problem of finding
optimal positions for a set of nodes such that connectivity of
the nodes are maintained is formulated as a SDP. The latter
uses a distributed algorithm to enable a team of mobile agents
to increase the connectivity of the team.

In contrast to these efforts, we propose a SDP formulation
for controlling the configuration of a team of mobile agents
for tracking moving targets while maintainingboth sensing
and communication constraints and optimizing an additional
tracking objective. Furthermore, in situations when one is
willing to forgo communication maintenance to ensure com-
plete coverage of all targets, we show how our formulation
can be simplified into a SOCP. This is relevant in situations
when communication with other team members must be
sacrificed to ensure all targets are appropriately tracked.

III. PROBLEM STATEMENT

The objective of this paper is to provide a general frame-
work that facilitates optimal target tracking with performance
guarantees. More precisely, we consider minimizing some
convexobjective function,Ψ: R

3n → R, while ensuring:

1) Complete target coverage, where every target is tracked
by at least a single agent.

2) Network connectivity across the robot formation to
facilitate robot coordination.

In this case, we defineΨ as a function of our decision
variable X = (xa

1 , x
a
2 , . . . , xa

n)
T

∈ R
3n. Here, X denotes

the concatenated positions of the robot team withxa
i ∈ R

3

representing the location of agenti with respect to some
world frameW . Additionally, we assume a fully actuated
robot model for each member of the team,i.e. where

ẋ = u u ∈ U ⊆ R
2 (1)

Fig. 1. The weighted visibility graph,GV (VV , EV ), for a team of three
robots observing a single target inR2. In our formulation, respective edge
weights are a function of the team’s positional state vector, X.

For the moment, we avoid discussion ofΨ and instead
focus on formulating a sufficient constraint set to ensure that
the optimal state vectorX guarantees coverage of all targets.

A. A State-dependent Graph Representation

To this end, we begin by exploiting the fact that a team
of robots and the targets they track collectively define a
weighted graph where an agent-to-target edge corresponds to
a single point-to-point sensor track. More precisely, letting
A = {a1, a2, . . . , an} and O = {o1, o2, . . . , om} respec-
tively denote the full set of agents and the full set of
observation targets, we define the graphGV (VV , EV ) where
VV = A ∪ O and EV = {e : e ∈ A×A ∪O}. We refer to
this graph as thevisibility graphand associate with its edges
a mappingfV : EV → R+.

Letting xt
j ∈ R

3 denote the position of observation target
oj in world coordinate frameW , we define

fV (y) =

{

fa
V (‖ xa

i − xa
j ‖2), y = (ai, aj) ∈ A×A

f t
V (‖ xa

i − xt
j ‖2), y = (ai, oj) ∈ A×O

(2)

where0 ≤ fa
V (xa

i , xa
j ), f t

V (xa
i , xt

j) ≤ 1. In other words, the
weights of the corresponding edges are a direct functional
of the relative Euclidean distance separating an agent from
some other observable network entity. Notice that this also
implicitly makesGV a function of the positional state vector
X , and as such, we accordingly denote itGV (X).

B. Ensuring Complete Target Coverage

Given the definition ofGV (X), observe that all targets in
the system are tracked whenever the graph itself is connected,
as this implies active links between all targets and at least
one member of the agent team. In other words, we would
like our constraint set to capture and preserve this notion of
connectivity when determining the optimal state vectorX .

With this in mind, we turn our attention to recent results
from spectral graph theory regarding theconnectivity of
an arbitrary graphG(V , E). In particular, we note that the
constraintλ2(L(G)) > 0 is both a necessary and sufficient
condition forguaranteeing the connectivityof G [23], where
λ2(L(G)) denotes the second smallest eigenvalue of the
weighted graph LaplacianL(G) given by

[L(G)]ij =

{

−wij , i 6= j
∑

i6=k

wik, i = j (3)



with wij being the weight associated with the edge shared
between verticesi andj.

In light of these observations, we can now pose the
following initial formulation for the target tracking problem

min Ψ(X)
s.t. λ2(LV (X)) > 0

(4)

whereLV (X) denotes the state-dependent Laplacian of the
visibility graph GV (X).

Noting the results of [2], we see that

λ2(LV (X)) > 0 ≡ PT
V LV (X)PV ≻ 0 (5)

where PV ∈ R
(n+m)×(n+m−1) comprises an orthonormal

basis for ann+m−1 dimensional subspace such that∀x ∈
span(PV ), 1T x = 0. As such, we can further solidify the
problem statement by reposing (4) as follows

min Ψ(X)
s.t. PT

V LV (X)PV ≻ 0
(6)

In this formulation, we adopt the standard Löwner ordering.

C. Enforcing Network Connectivity Constraints

Although, solving (6) yields a positional configuration that
will ensure all nodes are tracked, it makes no guarantees
regarding the underlying network connectivity of the robot
team. The ability to ensure a connected network graph while
performing such a task is often desirable as it facilitates –
among other things – distributed sensor fusion. To address
this, we extend our formulation by introducing a network
proximity graphGN (VN , EN) whereVN = A and EN =
{e : e ∈ A×A}. Similar to the previous graph formulation,
we associate a weight functionfN : EN → R+ that is a direct
functional of the Euclidean distance between network peers.

Given this definition, we can augment (6) accordingly to
yield the following problem statement

min Ψ(X)
s.t. PT

V LV (X)PV ≻ 0
PT

N LN(X)PN ≻ 0
(7)

Solving this problem, will yield an optimal positional
configuration for the team that maintains both network
connectivity as well as complete target coverage. However,
it should be noted that (7) is not necessarily a convex
optimization problem. In fact, the convexity of (7) hinges
upon the choice of weight functionsfa

V , f t
V andfN . As we

shall see, this fact does not prevent us from formulating the
target tracking problem as a discrete-time process whereby
during each iteration a convex form of (7) is solved.

IV. D EFINING INTERACTIVE CONTROL FUNCTIONS

Given this formulation, we now consider appropriate def-
initions of fa

V , f t
V andfN . The choice of these functions is

critical as they inherently govern the behavior of the team.As
these functions dictate the relationship between one node and
another as well as any observation targets, we see that at the
highest level that they can be consideredinteractive control
functions. With this in mind, we now consider appropriate
choices for a simple target tracking scenario.
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Fig. 2. (Top) An instance offa
V

whererij = 10 andǫl
ij = ǫu

ij = 4, ∀i, j.
For our purposes, a simple symmetric Gaussian was utilized to govern agent-
target interactions; however, a different potential function could have just
as easily been used. (Bottom) An instance of a simple exponential-decay
model for RF links withqmin = 10 andqmax = 15.

Momentarily neglecting discussion offa
V , we focus in-

stead on characterizing the desirable properties of weight
function f t

V , which governs the interactions of systems
agents and respective targets. In an ideal tracking scenario
the team will have an optimal number of tracks while each
agent maintains a safe standoff distance between itself andits
targets. In other words, lettingrij denote the desired distance
between agentai and targetoj , we would likef t

V to promote
the team to behave such that

|rij − ǫl
ij | ≤ dt

ij ≤ |rij + ǫu
ij |, ∀i, j (8)

where dt
ij ,‖ xa

i − xt
j ‖2 and ǫl

ij , ǫ
u
ij ∈ R+ dictate

the acceptable lower/upper bound tolerances for any tracks
between agentai and observation targetoj . When the right-
hand inequality holds, we define the track as beingactive.

Seeking inspiration from the motion-planning community,
we opt to consider a formulation off t

V modeled after
common potential functions. These functions are especially
attractive for our framework as they often offer nice differ-
entiable properties and facilitate easy modeling of (8).

For our purposes, we consider the caseǫl
ij = ǫu

ij and
modelf t

V using a standard symmetric Gaussian potential –
noting that the subsequent analysis can easily be adapted
for an alternate (symmetric or non-symmetric) formulation
using an appropriate potential function variant. That stated,
we consider the following definition

f t
V (xa

i , xt
j) =

{

e−
γ2

2 (dt
ij−rij)

2

, |dt
ij − rij | ≤ ǫ

0, otherwise
(9)

whereγ =
√

7
ǫ
. Figure 2 (Top) illustrates this function for

an instance withrij = 10 andǫ = 4.
Regardingfa

V , which governs inter-agent behaviors, we
see its definition is not as obvious since a variety of formula-
tion may lead to favorable results depending upon the chosen
application and mission objectives. For instance, we can
choosefa

V = 1 which has the effect of removing any inter-
agent observability requirements as it essentially says that no



matter what the positional state of the team, the inter-agent
links are connected or are observable everywhere. Whether
this is feasibly possible given the agents’ respective sensor
suites is inconsequential for the task at hand, as in choosing
the weights this way we are only concerned with ensuring
complete target coverage. Another reasonable choice forfa

V

is a potential function that behaves similarly to that used
to definefa

V . This definition would be useful in a scenario
where team members rely upon local observations of their
peers for such things as localization. In this paper, we adopt
the former definition offa

V .
In a similar manner, we can now address the issue of

weighting the network links inGN (X). The weights of these
links are very easily characterized, and such a formulation
has been addressed in recent literature [2], [22]. For our
purposes as well as for the sake of further discussion, we
consider the exponential decay model posed by [22]. Doing
so yields the following formulation forfN

fN (xa
i , xa

j ) =















1, da
ij ≤ qmin

e
−5(da

ij
−qmin)

qmax−qmin , qmin < da
ij ≤ qmax

0, da
ij > qmax

(10)

Figure 2 (Bottom) shows a single instance offN for
qmin = 10 andqmax = 15.

V. DEFINING A DISCRETESEMI-DEFINITE APPROACH

In this section, we consider formulating our problem as a
discrete time process whereby the agent team collectively
observes the relative positions of the observation targets
and then accordingly adjusts their respective trajectories
so as to minimize the given objective. As the targets are
assumed dynamic and control is inherently a discrete-time
process, we see that at best the team can only optimize
Ψ over the period∆t representing the rate at which they
are able to effectively sample the environment and issue
control signals. Although this approach does not guarantee
optimally-convergent behavior for the team, itdoes ensure
that the solution obtained will yield a trajectory that is
optimal with respect toΨ over that timestep.

A. Problem Formulation

With this in mind, we leverage the results of [2] who
considered a discrete time process for maximizing network
connectivity in multi-agent teams. Following suit, we per-
form a simple differentiation with respect to time and then
apply Euler’s first-order discretization method. Doing so
reveals the following discrete-time representation off t

V

f t
V (xa

i , xt
j)(k + 1) − f t

V (xa
i , xt

j)(k)

= τ t
Vk

{

xa
i (k) − xt

j

}T
∆xa

i (11)

τ t
Vk

= −
γ2(‖ xa

i (k) − xt
j ‖2 −rij)

‖ xa
i (k) − xt

j ‖2
f t

V (xa
i (k), xt

j)

where∀l, al ∈ A, we have∆xa
l = xa

l (k + 1) − xa
l (k).

Similarly for fN , we obtain

fN (xa
i , xa

j )(k + 1) − fN (xa
i , xa

j )(k) =

τNk

{

xa
i (k) − xa

j (k)
}T {

∆xa
i − ∆xa

j

}

(12)

τNk
= −

5fN(xa
i (k), xa

j (k))

(qmax − qmin) ‖ xa
i (k) − xa

j (k) ‖2

Given (11) and (12) and recallingfa
V is chosen constant

(i.e. fa
V (xa

i , xa
j )(k + 1) − fa

V (xa
i , xa

j )(k) = 0), we can
now define the discretized state-dependent Laplacians with
respect to both the visibility graphGV (X) and the network
proximity graphGN (X). For the former, we obtain

[LV (k + 1)]uv =

{

−fV (yu, yv)(k), u 6= v
∑

u6=s

fV (yu, ys)(k), u = v (13)

whereyu andyv are defined such that

yl =

{

xa
l , l ≤ n = |A|

xt
(l−n), n < l

Similarly for GN (X), we are able to define

[LN (k + 1)]uv =

{

−fN(xa
u, xa

v)(k), u 6= v
∑

u6=s

fN (xa
u, xa

s)(k), u = v (14)

Putting this all together, we arrive at a discrete-time for-
mulation for the optimal target tracking problem. At timestep
k, we aim to solve the following problem

min Ψ(X(k + 1))
s.t. ‖ xa

i (k + 1) − xa
i (k) ‖2≤ vi∆t, i = 1, . . . , n

PT
V LV (k + 1)PV ≻ 0

PT
NLN (k + 1)PN ≻ 0

(15)

wherevi denotes the translational velocity of agentai.
It should be noted that in this formulation, we have aug-

mented the problem withn second-order conic inequalities
constraining the distance each agent can travel in a single
step. These constraints are essential as they serve to reduce
the effects of the linearization process. They can also be used
to model velocity constraints on the individual robots.

As our constraint-set has been reduced to linear matrix
inequalities and recalling thatΨ(X(k + 1)) is assumed
convex, we see that (15) is in fact a semi-definite program,
and it can be efficiently solved using generalized interior-
point methods from convex optimization theory [23].

B. Choosing an Appropriate Objective

Until this point, we have avoided any detailed discussion
regarding the statement of our convex objective,Ψ. In fact, in
the context of target tracking there are many useful candidate
functions that fit well within this framework. One possibility
is to chooseΨ as the trace of the covariance representing the
uncertainty in measured target positions [24]. As such, (15)
would yield a position vector that minimizes the uncertainty
in the estimated target positions while ensuring full target
coverage and enforcing network connectivity.

In this paper, we instead chooseΨ(X) = −λ2(LV (X)).
Given this function, we can then maximize the second
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Fig. 3. (Left) The initial visibility and network proximitygraphs for a team of four agents inR2 charged with tracking three mobile targets. In this case,
each agent was modeled as using an on-board omnidirectionalcamera system with the team’s objective being to maximize the total number of active tracks
– i.e. Ψ(X) = −λ2(LV (X)). (Center) The trajectories of the respective team members as they obtain an optimal configuration. (Right) The resulting
visibility and network graphs for the team after convergence to optimality (Ψ(X) ≈ 0.5857).

smallest eigenvalue of the state-dependent graph Laplacian
associated with our visibility graph. ChoosingΨ this way
implicitly maximizes the number of active target tracks. Such
an objective may be quite useful in surveillance applications
where each member of the mobile team is outfitted with
a low-grade sensor suite. In such a case, maximizing the
number of target tracks while observing network connectivity
will ensure maximal redundancy in the observation network.

Other appropriate objective functions (e.g. weighted least-
squares) could be imagined. However, what is important
to note is the generality of our approach. So long as the
objective function is convex, and can be expressed in terms
of linear, quadratic, or semidefinite constraints, the resulting
problem will be a semidefinite program. The convexity of
SDPs ensures the problem solution will be globally optimal
while providing target coverage and network connectivity.

C. Simulation Results

In an effort to validate our discrete-time framework, we
implemented our paradigm in Matlab using SeDuMi 1.1R3
[25] via YALMIP [26]. Figure 3 illustrates the results from
one such trial in which the objective was to maximize the
number of active target tracks in the visibility graph,i.e.
Ψ(X) = −λ2(LV (X)). In this scenario, four networked
agents were responsible for tracking three mobile targets
while maintaining a desired standoff distancerij = 0.15.
The minimal desired agent-target proximity bounds for active
tracks was set at0.10 with a maximum of0.20. In this
case, each agent was modeled using as its a primary sensor
an omnidirectional camera system, and the network was
modeled to experience exponential decay between 0.10 and
0.20. The maximal translational velocity of respective team
members was1.1 times that of the mobile targets. In this
case, the team ultimately converges to an optimal configu-
ration (Ψ(X) ≈ 0.5857) whereby the maximal number of
tracks are found while maintaining network connectivity.

Figure 4 illustrates the progression of bothλ2(LV (X))
and λ2(LN (X)) as the agent team in Figure 3 converges
to an optimal configuration. In this plot, we highlight the
monotonically increasing behavior of the objective while
noting thatλ2(LN (X)) remains positive for the entire run. In

other words, the team optimizes its objective while ensuring
that network connectivity remains intact.
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Fig. 4. The progression ofλ2(LV (X)) and λ2(LN (X)) corresponding
to the run illustrated in Figure 3. In this case, the objective was to
maximize the number of active tracks in the agent configuration – i.e.
Ψ(X) = −λ2(LV (X)). The connectivity of the visibility graph increases
monotonically as the team converges to a configuration that ultimately
maximizes the objective locally, yieldingΨ(X) ≈ 0.5857.

VI. OPTIMAL TARGET TRACKING VIA SOCP

In some cases, it may be beneficial to sacrifice connectivity
of the underlying network proximity graph in order to ensure
full target coverage. In others, the range of communication
links may far exceed the sensing range of the mobile robot
team. In such scenarios, the constraintPT

NLN (X)PN ≻ 0 is
redundant and/or superfluous and can be safely eliminated
from the problem statement. In so doing, we obtain the
original formulation of the tracking problem presented in
(6), which we claim can be effectively relaxed as a SOCP.

A. Considering A Relaxed Formulation

The key to obtaining this result, is observing that the
constraintPT L(X)P ≻ 0 reduces to a single non-linear
inequality when the graph in question features only a single
pair of nodes. As such, we consider a relaxed formulation
of the the tracking problem whereby we associate with each
targetoj a single bi-nodal graphGVj

(Vj , Ej) with one vertex
serving to represent the agent team (i.e. A) and the other
representing the target itself.By enforcing the connectivity of
each of these graphs in our problem formulation, we ensure
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at least a single active track to each observation target. In
other words, we ensure full target coverage.

Implicit in this statement is that an appropriate weight
function can be formulated forGVj

(X) that fully captures
the level of connectivity between the agent team and target
oj . Although a variety of functions can be considered, we
extend upon our previous analysis and propose the following

fVj
(xa

1 , xa
2 , . . . , x

a
n, xt

j) =
1

n

n
∑

i=1

f t
V (xa

i , xt
j) (16)

Notice that by this definition, when targetoj is being actively
tracked by all network agents with each agent observing its
desired standoff distance, we havefvj

= 1. Similarly, when
no agent is actively engaging the target, we havefVj

= 0.
In light of these results, we restate (6) in the following

relaxed form

min Ψ(X)
s.t. PT LVj

(X)P > 0, j = 1, . . . , m
(17)

whereP = [1,−1]T .
Once again applying Euler’s first-order discretization

method, we obtain the following discrete-time formulation

min Ψ(X(k + 1))
s.t. ‖ xa

i (k + 1) − xa
i (k) ‖2≤ vi∆t, i = 1, . . . , n

PT LVj
(k + 1)P > 0, j = 1, . . . , m

(18)

This is a standard SOCP constrained byn second-order
conic inequalities along withm linear inequalities. It is
readily solvable using standard SOCP techniques that are
significantlymore efficient than SDP approaches [23].

B. Simulation Results

Figure 5 illustrates a team of three robots inR2 breaking
an initial path formation in order to successfully track three
evading targets. Although contrived, this example serves to
highlight the governing behavior of our discrete-time SOCP
formulation. By ensuring the connectivity of them = 3 bi-
nodal visibility graphs, we see the team is able to ensure full
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the relaxed problem using both a non-industrial (SeDuMi) and industrial
solver (MOSEK). In both figures, a single data point corresponds to the
mean CPU time obtained from solving ten instances of the problem

target coverage. In this case, the objective was to maximize
the minimal respective connectivity of these graphs with
rij = 0.06, andǫl

ij = ǫu
ij = 0.04, ∀i, j.

In an effort to gauge the comparative difference in com-
plexity between the two approaches, we solved instances of
(15) and (18) for team sizes up to 150 nodes operating in
R

2. In our SDP implementation, we considered the objec-
tive Ψ(X) = −λ2(LV (X)) and maintainedfa

V = 1. In
the SOCP implementation, we considered maximizing the
minimal connectivity among them = 3 bi-nodal visibility
graphs. In both cases, SeDuMi was used as the underlying
solver. All computations were done on a standard desktop
computer having a 2.4 GHz Core 2 Duo Pentium Processor
with 2GB RAM. Figure 6 shows the results of these trials
where each data point corresponds to the mean utilization
time obtained from solving ten random problem instances.

Not surprisingly, the computational overhead associated
with solving the SDP formulation scales cubicly in time.
In contrast, the computational load incurred by solving
our SOCP relaxation exhibits highly linear growth (r2 =
0.9205). Using SeDuMi, which is a non-industrial grade
solver, we see that solving a single iteration of (18) for a
team of 150 agents requires 174 milliseconds.

In practice, however, it is far more likely that an industrial
grade solver will actually be used. As such, we also solved
our SOCP relaxation considering the same random problem
instances using the MOSEK industrial solver package [27].
The results of these trials are shown in Figure (6) (Bottom).
Again, the computational overhead exhibits an approximately
linear trend (in this case,r2 = 0.7435). However, what is
perhaps more impressive is thatsolving a single iteration of
(18) for a team of 150 nodes requires only 33 milliseconds!

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we considered an optimization framework
for dynamic target tracking. To realize this framework, we
introduced the notion of a weighted visibility graph to



capture the state of active target tracks as a function of the
team’s state positional vector,X . Noting that dynamic target
tracking lends itself well to a discrete-time framework, we
employed standard linearization techniques to define an iter-
ative SDP approach for solving the target tracking problem
subject to network connectivity constraints. In cases where
communication constraints can be relaxed, we presented a
novel SOCP relaxation to the target tracking problem that
ensures connectivity of the state-dependent visibility graph
while providing a tremendous reduction in computational
cost when compared to a standard SDP formulation.

There are obvious areas where this work can be improved.
For instance, in some applications, a simple Gaussian poten-
tial may not fully capture the desired behavior for agent-
target interactions. To address this issue, we are currently
considering alternate non-symmetric weight functions. An-
other obvious extension to this framework is a bit more
challenging. In our problem formulation, we can at best only
ensure that each target in the network has associated with it
at least a single active track. It would be highly desirable if
we could directly or indirectly constrain the minimal number
of tracks for each agent. For instance, in a scenario where
each team member is using only stereo vision to track the
desired targets, we would like to guarantee that each agent
has at least two high-level active tracks – one for each
camera. Developing a formulation by which to enforce such
a constraint is currently the focus of our continued work on
this topic.
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