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Abstract— In this paper, we present an optimization frame- system and control literature has shown that the maximiza-
work for target tracking with mobile robot teams. The target  tion of the second smallest eigenvalue for a state dependent
tracking problem is modeled as a generic semidefinite progm 55 | aplacian matrix can be formulated as a semidefinite
(SDP). When paired with an appropriate objective function, o1 Wi v th Its to the t t tracki
the solution to the resulting problem instance yields an opmal program [2]. X € apply ) es? results 1o the arge . racking
robot configuration for target tracking at each time-step, while  task and obtain a coordination strategy that maintainstarg
guaranteeing target coverage (each target is tracked by at coverage and network connectivity while optimizing a given
least one robot) and maintaining network connectivity. Our  gbjective function. Specifically, robot-target assigntseand
methodology is based on the graph theoretic result where ;niar agent communication constraints are embeddedsin
the second smallest eigenvalue of the interconnection grhp ibilit dnetwork h tivelv. The t t tracki
Laplacian matrix is a measure for the connectivity of the oIty an_ne workgrapnhs, respectively. The target tracking
graph. This formulation enables us to model agent-target Problem is then formulated as a SDP where the coverage
coverage and inter-agent communication constraints as lear- and communication constraints are modeled as linear-natri
matrix inequalities. We also show that when the communicatn inequalities (LMI).
constraints can be relaxed, the resulting problem can be  An imnortant advantage of this formulation is that it is

reposed as a second-order cone program (SOCP) which can be tic to th lit tric bei timized. So |
solved significantly more efficiently than its SDP counterps. agnostic 1o the quality metric being optimized. S0 long as

Simulation results for a team of robots tracking multiple targets ~ the objective function is convex, and can be expressed in
are presented. terms of linear, quadratic, or semidefinite constraintg th
resulting problem will be a SDP. The convexity of semidefi-

|. INTRODUCTION nite programs ensures the problem solution will be globally

We are interested in developing robot teams for use iPtimal, and solvable in polynomial time in the number of
surveillance and monitoring applications. The idea of gsinfobots and targets. We also show that when communication
teams of small, inexpensive robotic agents to accompligipnstraints must be relaxed to ensure target coveraget¢e.qg.
various tasks is one that has gained increasing currenffick diverging/evasive targets), the problem can be mos
as embedded processors and sensors become smaller, n#§r& second order cone program (SOCP) that can be solved
capable, and less expensive. To this point, much of trégnificantly more efficiently than its SDP counterpart.
work in multi-robot coordination has focused on control
and perception. It has generally been assumed that each
team member has the ability to communicate with any other In the last several years, increased attention has been
member with little to no consideration for the the quality offocused on the effects of communication networks in multi-
the wireless communication network. Such an assumptiodgent teams. Earlier works generally assumed static com-
although valid in certain situations, does not generallidho Munication ranges, [3], and/or relied on coordinationtstra
- especially when considering the deployment of robot teantes that require direct line-of-sight, [4]. In [5] and [6]
within unstructured and unpredictable environments. decentralized controllers were used for concurrently mov-

Our previous work in target tracking made similar simpli-Ng toward goal destinations while maintaining communica-
fying assumptions, as no constraints were placed on sensiffgf! constraints by maintaining line-of-sight and assignin
and communication ranges [1]. This allowed target coveragéatic communication/sensor ranges respectively. Coardi
and network connectivity requirements to be ignored in prddion strategies based on inter-agent signal strength declu
to simplify the optimization process. In this paper howevel’]: [8], and [9]. In [10], low-level reactive controllersapa-
we consider the problem of controlling the configuratiorP!® Of responding to changes in signal strength or estimated
of a team of mobile agents for target trackingder both gvallablg bandwidth are useq to constrain robots’ movesnent
coverage and communication constrain®ur methodology N surveillance and reconnaissance tasks. Although much c_>f
is based on the graph theoretic result where the secoHf recent works have focused on the effects of communi-
smallest eigenvalue of the interconnection graph Lapﬂaci&at'on maintenance on navigation, few have addressed the

matrix is a measure for the connectivity of the graph. RecefSueé 0f communication maintenance in tasks such as col-
laborative/collective localization and data fusion whesam
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Il. RELATED WORK



visibility constraints and determining optimal sensorcgla
ment are considered. More recent works include [14], where
distributed control strategies are used to minimize thewarho
of time targets are outside of mobile agents’ sensor ranges.
In [15], artificial potential functions are used to coordma
a team of mobile agents to track multiple moving targets.
[16] addresses the same problem by formulating it as two
sub-problems: target tracking for a single robot and oa-lin
motion coordination strategy for a team of robots. In [17],
the authors con_S|der a motion coordlnatlor_l strategy to Ier_1al_q;ig. 1. The weighted visibility graphiy (Vy, &), for a team of three
a team of mobile sensors to detect multiple targets withirbots observing a single target R¥. In our formulation, respective edge
a given region. [18] analyses the accuracy of cooperati\Y@'ghtS are a function of the team’s positional state veckor
localization and target tracking in a team of mobile robots
using an extended Kalma_n_ Filter form_ulatlon a_nd provide For the moment, we avoid discussion &f and instead
upper bounds for the position uncertainty obtained by th]e . . .
L . o ocus on formulating a sufficient constraint set to ensuag th

team. In [19], a distributed control strategy is used méainta h .

. ) : e optimal state vectok guarantees coverage of all targets.
a team of mobile agents in a mesh formation to enablte

tracking of a discrete or diffused target. In [1], [20], [21] A. A State-dependent Graph Representation

the authors employ particle filters to minimize the expected Tq this end, we begin by exploiting the fact that a team
error in tracking mobile target(s) for a team of mobile rabotof rohots and the targets they track collectively define a
without the use of explicit switching rules. weighted graph where an agent-to-target edge corresponds t
Lastly, maximizing the second smallest eigenvalue of thg single point-to-point sensor track. More precisely,inett
graph Laplacian for maintaining team connectivity has alsg{ — {4y, a5,...,a,} and @ = {01,0s,...,0m} respec-
been considered in both [2] and [22]. The former is perhapfely denote the full set of agents and the full set of
most related to our work, where the problem of findingypservation targets, we define the graph(Vy, &) where
optimal positions for a set of nodes such that connectivity o), — AU © and€&y, = {e: e € A x AU O}. We refer to
the nodes are maintained is formulated as a SDP. The Iattﬁ‘s graph as th9|s|b|||ty graph and associate with its edges
uses a distributed algorithm to enable a team of mobile agen{ mappingf, : £ — R,

to increase the connectivity of the team. Letting ¢ € R* denote the position of observation target

In contrast to these efforts, we propose a SDP formulatio(pj in world coordinate fram@V, we define
for controlling the configuration of a team of mobile agents " " " -
for tracking moving targets while maintainirtgpth sensing  f,,(y) = { f\t/(” Ti Ty l2), y = (ai,a;) € Ax A )
and communication constraints and optimizing an additiona fo(l2g =25 ll2), y=(ai,05) € Ax O
tracking objective. Furthermore, in situations when one ighere( < f“}(x?,x?),f‘t,(x?,x;) < 1. In other words, the
willing to forgo communication maintenance to ensure comyeights of the corresponding edges are a direct functional
plete coverage of all targets, we show how our formulatiogf the relative Euclidean distance separating an agent from
can be simplified into a SOCP. This is relevant in situationgome other observable network entity. Notice that this also
when communication with other team members must bignplicitly makesGy a function of the positional state vector
sacrificed to ensure all targets are appropriately tracked. x and as such, we accordingly denotei (X).

I1l. PROBLEM STATEMENT B. Ensuring Complete Target Coverage

The objective of this paper is to provide a general frame- Given the definition of7y (X), observe that all targets in
work that facilitates optimal target tracking with perfainte the system are tracked whenever the graph itself is corthecte
guarantees. More precisely, we consider minimizing sonm&s this implies active links between all targets and at least
convexobjective function,: R3" — R, while ensuring: one member of the agent team. In other words, we would

1) Complete target coverage, where every target is trackdl§e our constraint set to capture and preserve this notfon o
by at least a single agent. connectivity when determining the optimal state veckar

2) Network connectivity across the robot formation to With this in mind, we turn our attention to recent results
facilitate robot coordination. from spectral graph theory regarding tltennectivity of

an arbitrary graphG(V, £). In particular, we note that the

constraintA2(L(G)) > 0 is both a necessary and sufficient

condition forguaranteeing the connectiviof G [23], where

X2(L(G)) denotes the second smallest eigenvalue of the

weighted graph Laplaciaf(G) given by

In this case, we defind as a function of our decision
variable X = (x‘f,xg,...,x‘;)T € R®". Here, X denotes
the concatenated positions of the robot team withe R3
representing the location of agentwith respect to some
world frame V. Additionally, we assume a fully actuated

robot model for each member of the teaime, where { —wyj, 1#]

G)l.. = ) S 3
i=u uelCR2 1) [L(G)];; gﬁ:kwl;€7 1=7 (3)



with w;; being the weight associated with the edge shared i,

between vertices and j. !
In light of these observations, we can now pose the

following initial formulation for the target tracking prédim

min ¥ (X)

s.t. )\Q(LV(X)) >0
where Ly (X) denotes the state-dependent Laplacian of the
visibility graph Gy (X).

Noting the results of [2], we see that

XAo(Ly (X)) >0=PLLy(X)Py =0 (5)

where P, € R(tm)x(n+m=1) comprises an orthonormal
basis for am +m — 1 dimensional subspace such that €
span(Py), 17z = 0. As such, we can further solidify the
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Fig. 2. (Top) An instance of % wherer;; = 10 and sﬁj = €y =4, Vi, j.
For our purposes, a simple symmetric Gaussian was utilzgdern agent-

problem statement by reposing (4) as follows target interactions; however, a different potential fisrctcould have just
. as easily been used. (Bottom) An instance of a simple expiahelecay
min ¥(X) (6) model for RF links withg,nir, = 10 and gmaz = 15.

s.t. P‘;Lv(X)PV =0
In this formulation, we adopt the standard Lowner ordering. Momentarily neglecting discussion gf%, we focus in-

C. Enforcing Network Connectivity Constraints stead on characterizing the desirable properties of weight

o . . .
Although, solving (6) yields a positional configurationtha fUnction fy., which governs the interactions of systems

will ensure all nodes are tracked, it makes no guarante8g€nts and respective targets. In an ideal tracking seenari

regarding the underlying network connectivity of the robofhe team .W|II.have an optimal nl.!mber of tracks Wh'le each

team. The ability to ensure a connected network graph whifent maintains a safe standoff distance betwgen |t§eﬂ$ind

performing such a task is often desirable as it facilitates [2r9€ts. In other words, letting; denote the d(t-:-swed distance

among other things — distributed sensor fusion. To addre@§tWeen agent; and targev;, we would like f; to promote

this, we extend our formulation by introducing a networih€ t€am to behave such that

proximity graphGy (Vn,En) WhereVy = A and &y = Irij — €b;] < dij < |rij + €], Vi, j (8)

{e: e € A x A}. Similar to the previous graph formulation, . s . . ' . ' " _

we associate a weight functigiy : Ex — R, that is a direct where d;; =| af — z; |2 and €;,¢f; € Ry dictate

functional of the Euclidean distance between network peer§® acceptable lower/upper bound tolerances for any tracks

Given this definition, we can augment (6) accordingly tg&tween ageni; and observation targef. When the right-
yield the following problem statement hand inequality holds, we define the track as beicgve

Seeking inspiration from the motion-planning community,

min \I/F;X) we opt to consider a formulation of{ modeled after
s.t. P\:/FLV(X)PV =0 (") common potential functions. These functions are espgciall
PyLn(X)Py =0 attractive for our framework as they often offer nice difer

Solving this problem, will yield an optimal positional entiable properties and facilitate easy modeling of (8).
configuration for the team that maintains both network For our purposes, we consider the ca$]e: €, and
connectivity as well as complete target coverage. Howevenodel f{, using a standard symmetric Gaussian potential —
it should be noted that (7) is not necessarily a conveRoting that the subsequent analysis can easily be adapted
optimization problem. In fact, the convexity of (7) hingesfor an alternate (symmetric or non-symmetric) formulation
upon the choice of weight function§:, f{, and fn. As we using an appropriate potential function variant. Thatestat
shall see, this fact does not prevent us from formulating thae consider the following definition
target tracking problem as a discrete-time process whereby {e—f(dfj—m)2 F

) i 17 =

during each iteration a convex form of (7) is solved. f\t/(iC?,UC;) =
0, otherwise

9)
IV. DEFINING INTERACTIVE CONTROL FUNCTIONS

Given this formulation, we now consider appropriate defwherey = \/z Figure 2 (Top) illustrates this function for
initions of f&, f!, and fy. The choice of these functions is an instance with-;; = 10 ande = 4.
critical as they inherently govern the behavior of the teAm. Regarding f{;, which governs inter-agent behaviors, we
these functions dictate the relationship between one node asee its definition is not as obvious since a variety of formula
another as well as any observation targets, we see that at tlesm may lead to favorable results depending upon the chosen
highest level that they can be considemetéractive control application and mission objectives. For instance, we can
functions. With this in mind, we now consider appropriatechoosef{;, = 1 which has the effect of removing any inter-
choices for a simple target tracking scenario. agent observability requirements as it essentially sagfsrth



matter what the positional state of the team, the inter-agen Similarly for fy, we obtain
links are connected or are observable everywhere. Whether

this is feasibly possible given the agents’ respective@ens /v (zf,25)(k +1) — fn(af, zf)(k) =

suites is inconsequential for the task at hand, as in chgosin 7, {22 (k) — xq(k)}T (A8~ Az} (12)
. . N . k K3 J 3 J

the weights this way we are only concerned with ensuring . .

complete target coverage. Another reasonable choicgfor o 5fn (@ (k), 25 (k))

. . . .. T = —
is a potential function that behaves similarly to that used e (Gmaz — Gmin) || ¢ (k) — 23 (k) |2

to define . This definition would be useful in a scenario ., (11) and (12) and recalling® is chosen constant
where team members rely upon local observations of th .ire fo (e, 2% (k + 1) — fa(z2,2%)(k) = 0), we can
£ v X, T vy, Ly - Yh

{ohee;s for Sl:jd;_ thtl_ngs eflsalocallzatmn. In this paper, we ado ow define the discretized state-dependent Laplacians with
e former definition offy. éispect to both the visibility grap@y (X) and the network

In a similar manner, we can now address the issue e .
! oximity graphG y (X). For the former, we obtain
weighting the network links ity (X ). The weights of these y graphGiy (X)

links are very easily characterized, and such a formulation — v (Yu, yo) (K), uFv

has been addressed in recent literature [2], [22]. For our [Lv(k+1l,, :{ > vy k), w=v (13)
purposes as well as for the sake of further discussion, we u#s
consider the exponential decay model posed by [22]. Doingherey, andy, are defined such that

so yields the following formulation foif 5 a [<n=|A
Y= { ¢ ~
17 d;’lj S qmin x(l_n)7 n <l
75('1»?'*‘1771“1) e -
In(f,a) =S e g < 0 < s (10) Similarly for Gy (X), we are able to define
0, 0 > Gomas —fn(as,a)(k),  u#v

[Ln(k+1)],, = { S fn(@e, 2 (k), u=0v (14)
Figure 2 (Bottom) shows a single instance fif for uFs

gmin = 10 and gz = 15. Putting this all together, we arrive at a discrete-time for-

mulation for the optimal target tracking problem. At timeyst
V. DEFINING A DISCRETE SEMI-DEFINITE APPROACH k, we aim to solve the following problem

In this section, we consider formulating our problem as a min ¥ (X (k + 1))

discrete time process whereby the agent team collectively ¢ ¢ | 22k +1) — 29(k) |2< viAL, i=1,...,n
observes the relative positions of the observation targets P‘T,FZLV(k +1) P:/ 0 (15)
and then accordingly adjusts their respective trajectorie PILy(k+1)Py >0

so as to minimize the given objective. As the targets are

assumed dynamic and control is inherently a discrete-tinféherev; denotes the translational velocity of agent

process, we see that at best the team can only optimize't should be noted th_at in this formulatlon,. we have.:.;lug-
U over the periodAt representing the rate at which theymented. the proble.m witlhh second-order conic mequalmgs
are able to effectively sample the environment and isstgPNStraining the distance each agent can travel in a single
control signals. Although this approach does not guarantSteP- These constraints are essential as they serve toereduc
optimally-convergent behavior for the team,dibes ensure the effects of the linearization process. They can also bd us

that the solution obtained will yield a trajectory that isto model velocity .constraints on the individual r(_)bots. .
optimal with respect tal over that timestep. As our constraint-set has been reduced to linear matrix

inequalities and recalling tha¥ (X (k + 1)) is assumed
A. Problem Formulation convex, we see that (15) is in fact a semi-definite program,
and it can be efficiently solved using generalized interior-

With this in mind, we leverage the results of [2] Who&oint methods from convex optimization theory [23].

considered a discrete time process for maximizing netwo
connectivity in multi-agent teams. Following suit, we perB. Choosing an Appropriate Objective

form a simple differentiation with respect to time and then yntil this point, we have avoided any detailed discussion
apply Eulers first-order discretization method. Doing sgegarding the statement of our convex objectieln fact, in

reveals the following discrete-time representationypf the context of target tracking there are many useful canelida
tx® 2t t(oa .t functions that fit well within this framework. One possibjli
fv (@i 25)(k + 1) — fy (2f, 25) (k) is to choosel as the trace of the covariance representing the

=y, {=¢(k) - x;}T Az¢ (11) uncertai_nty in meg_sured target posi.tigng [24]. As such) .(15
would yield a position vector that minimizes the uncertaint
. ~2(|| 28 (k) — x; 2 =7ij) .., . 1)t in the estimated target positions while e_n_suring full thrge
v, = [2%(k) — 2% |2 fv (@i (k), z5) coverage and enforcing network connectivity.
! / In this paper, we instead choodg X) = —\y(Ly (X)).
whereVi, q; € A, we haveAx) = xf(k+ 1) — xf (k). Given this function, we can then maximize the second
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Fig. 3. (Left) The initial visibility and network proximitgraphs for a team of four agents R? charged with tracking three mobile targets. In this case,
each agent was modeled as using an on-board omnidirecttanara system with the team’s objective being to maximieetdkal number of active tracks
—ie. ¥(X) = —X2(Ly(X)). (Center) The trajectories of the respective team memt®ithey obtain an optimal configuration. (Right) The resgltin
visibility and network graphs for the team after convergetw optimality (X)) ~ 0.5857).

smallest eigenvalue of the state-dependent graph Laplaciather words, the team optimizes its objective while engurin

associated with our visibility graph. Choosinlg this way that network connectivity remains intact.

implicitly maximizes the number of active target trackscBu

an objective may be quite useful in surveillance applicetio

where each member of the mobile team is outfitted with

a low-grade sensor suite. In such a case, maximizing the

number of target tracks while observing network connetstivi o

will ensure maximal redundancy in the observation network. £ 03
Other appropriate objective functiors . weighted least-

squares) could be imagined. However, what is important

to note is the generality of our approach. So long as the o

objective function is convex, and can be expressed in terms

of linear, quadratic, or semidefinite constraints, the Itesy ime (teraton tmben

problem will be a semidefinite program. The convexﬂy ofFig. 4. The progression oks(Ly (X)) and Az(Ly (X)) corresponding

SDPs ensures the problem solution will be globally optima},"the run illustrated in Figure 3. In this case, the objectiwas to

while providing target coverage and network connectivity. maximize the number of active tracks in the agent configomat i.e.
¥(X) = —X2(Ly(X)). The connectivity of the visibility graph increases
C. Simulation Results monotonically as the team converges to a configuration titahately

. . . maximizes the objective locally, yielding (X) = 0.5857.
In an effort to validate our discrete-time framework, we

implemented our paradigm in Matlab using SeDuMi 1.1R3
[25] via YALMIP [26]. Figure 3 illustrates the results from VI. OPTIMAL TARGET TRACKING VIA SOCP

one such trial in which the objective was to maximize the |n some cases, it may be beneficial to sacrifice connectivity
number of active target tracks in the visibility grapte.  of the underlying network proximity graph in order to ensure
U(X) = —A2(Lv(X)). In this scenario, four networked fy|| target coverage. In others, the range of communication
agents were responsible for tracking three mobile targefiaks may far exceed the sensing range of the mobile robot
while maintaining a desired standoff distancg = 0.15.  team. In such scenarios, the constraftL x (X)Py = 0 is

The minimal desired agent-target proximity bounds fona&cti redundant and/or superfluous and can be safely eliminated
tracks was set a0.10 with a maximum of0.20. In this  from the problem statement. In so doing, we obtain the
case, each agent was modeled using as its a primary sengaginal formulation of the tracking problem presented in

an omnidirectional camera system, and the network wgg), which we claim can be effectively relaxed as a SOCP.
modeled to experience exponential decay between 0.10 and

0.20. The maximal translational velocity of respectivemiea A- Considering A Relaxed Formulation

members wad.1 times that of the mobile targets. In this The key to obtaining this result, is observing that the

case, the team ultimately converges to an optimal configeonstraint P L(X)P = 0 reduces to a single non-linear

ration (T(X) = 0.5857) whereby the maximal number of inequality when the graph in question features only a single

tracks are found while maintaining network connectivity. pair of nodes. As such, we consider a relaxed formulation
Figure 4 illustrates the progression of both(Ly (X)) of the the tracking problem whereby we associate with each

and \2(Ln(X)) as the agent team in Figure 3 convergesargeto; a single bi-nodal grapti'y, (V;, £;) with one vertex

to an optimal configuration. In this plot, we highlight theserving to represent the agent teane.(4) and the other

monotonically increasing behavior of the objective whilerepresenting the target itseBy enforcing the connectivity of

noting that\o (L y (X)) remains positive for the entire run. In each of these graphs in our problem formulation, we ensure

Visibility Graph
Network Proximity Graph




Agent SDP Formulation vs SOCP Relaxation
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Fig. 5. A team of three agents initially deployed in a pathakréormation  Fig. 6. (Top) CPU utilization time obtained from solving hothe SDP
to ensure active tracks of three mobile targets. Conngctvd the state- formulation and SOCP relaxation via SeDuMi for teams havipgto 150
dependent visibility graphGiy (X), is ensured by using the proposed SOCPagents tracking 3 targets R?. (Bottom) CPU utilization trends for solving
relaxation of the target tracking problem. In this scenathe objective was the relaxed problem using both a non-industrial (SeDuM#l ardustrial
to maximize the minimal connectivity of the bi-nodal visibility graphs. solver (MOSEK). In both figures, a single data point corresizoto the
mean CPU time obtained from solving ten instances of thelgnob

at least a single active track to each observation target
other words, we ensure full target coverage. target coverage. In this case, the objective was to maximize
Implicit in this statement is that an appropriate weighthe minimal respective connectivity of these graphs with
function can be formulated fofy, (X) that fully captures 7ij = 0.06, ande}; = i = 0.04, Vi, j.
the level of connectivity between the agent team and target!n an effort to gauge the comparative difference in com-
oj. Although a variety of functions can be considered, w®lexity between the two approaches, we solved instances of
extend upon our previous analysis and propose the followirfd5) and (18) for team sizes up to 150 nodes operating in
Lo R2. In our SDP implementation, we considered the objec-
a .a a ty_ * t(a .t tive U(X) = —X\(Ly (X)) and maintainedf% = 1. In
Fy (@1, @, s, 33) = o ;f‘/(xi’xj) (16) the SC()C)P impIem(entéltio)r)], we consideredfr‘{1aximizing the

. . I . . . minimal connectivity among the: = 3 bi-nodal visibilit
Notice that by this definition, when target is being actively graphs. In both casyes SelguMi was used as the unerIying

tracked by all network agents with each agent observing i olver. All computations were done on a standard desktop

desired ft_andclff dllstance, we :‘haﬁl? - 1{ Slml:]arly, _vvgen computer having a 2.4 GHz Core 2 Duo Pentium Processor
nol ag?_errl]t 'Sfat% Vely englc’;\glng € ?rtge ’GW? tf}"%ef_ "' . with 2GB RAM. Figure 6 shows the results of these trials
In 'gf of these results, we restate (6) in the fo OWINGhere each data point corresponds to the mean utilization
relaxed form time obtained from solving ten random problem instances.
min ¥ (X) Not surprisingly, the computational overhead associated
T ; an . , >
st. PP Ly, (X)P>0,j=1,....m with solving the SDP formulation scales cubicly in time.
whereP = [1, ~1]”. In contrast, the computational load incurred by solving

Once again applying Euler’s first-order discretizatiorP 4" SOCP relaxation exhibits highly linear growti? (=

method, we obtain the following discrete-time formulation 0.9205). Using SeDUM"_Wh'Ch s a _non-l_ndustrlal grade
solver, we see that solving a single iteration of (18) for a

min V(X (k +1)) team of 150 agents requires 174 milliseconds.
st || 2§ (k+1) —xf(k) < viAt, i=1,...,n (18) In practice, however, it is far more likely that an industria
P'Ly,(k+1)P >0, j=1,...,m grade solver will actually be used. As such, we also solved

This is a standard SOCP constrained bysecond-order ©Ur SOCP relaxation considering the same random problem
instances using the MOSEK industrial solver package [27].

conic inequalities along withn linear inequalities. It is _ S
readily solvable using standard SOCP techniques that af8€ results of these trials are shown in Figure (6) (Bottom).

significantlymore efficient than SDP approaches [23]. ﬁfﬁ;?'ttrz(;go(?:,pfﬁiiﬂggi%virhoez;igeg;hiai;?,vae:],:rpmjm?e

B. Simulation Results perhaps more impressive is ttalving a single iteration of
Figure 5 illustrates a team of three robotsRR breaking (18) for a team of 150 nodes requires only 33 milliseconds!
an initial path formation in order to successfully trackethr
evading targets. Although contrived, this example serees t
highlight the governing behavior of our discrete-time SOCP In this paper, we considered an optimization framework
formulation. By ensuring the connectivity of the = 3 bi- for dynamic target tracking. To realize this framework, we
nodal visibility graphs, we see the team is able to ensute fuhtroduced the notion of a weighted visibility graph to
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. . L. tiple moving targets,’Autonomous Robqt2002.
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each team member is using onIy stereo vision to track the lance system,” irProceedings of IEEE/RSJ International Conference
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