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Abstract— In this paper, we present a method for
infrastructure-free localization of Automated Guided Vehicles
(AGVs) in a warehouse environment. To accomplish this, our
approach leverages 3D data for both mapping and feature
segmentation. First, a 3D reconstruction of the warehouse
is created to extract salient natural features — in this case
the shelving uprights — as landmarks. Next, the map-based
localization approach leverages 3D LIDAR to enable 3D feature-
to-landmark matching which minimizes the potential for data
association errors. In our experiments in a representative ware-
house environment, we demonstrated a localization accuracy
of approximately 2cm without the use of retroreflector targets.
Furthermore, 100% of visible landmarks were detected and
there were no false positives.

I. INTRODUCTION

In warehouse environments, manual forklifts (aka “lift
trucks”) are the workhorses of material handling [1]. In 2013
alone it was estimated that orders for over 1 million forklifts
were placed [2]. A typical work cycle involves ferrying
palletized goods and materials between storage (either racks
and shelves or block storage areas) and trucks for receiving
or shipment. Despite their flexibility and effectiveness in ma-
terial handling tasks, they are not without their shortcomings.
These include operating efficiency, high energy consumption,
and safety considerations. These concerns have led to the rise
of Automated Guided Vehicle (AGV) systems for automated
pallet transport and storage [3], [4], [5], [6]. While they lack
the adaptability of human operators, for repetitive material
handling tasks they are far more efficient - often operating
around the clock, and with reduced product damage. Also in
large part due to rigorous ANSI safety standards regulating
their design and use [7], they are far safer in practice.

AGVs are not merely vehicles, but autonomous systems
in the full sense of the word. The components of an AGV
system include one or more automated vehicles, a localiza-
tion system which provides precise position and orientation
estimates for the vehicles, a route map or network which
delineates the guidepaths where the AGVs can travel, and a
centralized controller which coordinates between and assigns
specific tasks to the individual vehicles [8]. While all of these
components are essential for AGV operation, it can be argued
that the enabling technology is the localization system as it
answers the first fundamental question which an autonomous
vehicle must ask (i.e., Where am I?). There are multiple
approaches to AGV localization [9]. The first systems relied
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Fig. 1. An occupancy grid map of an approximately 20 × 35 meter section
of warehouse. The red circles denote a feature map composed of the vertical
pallet rack supports.

upon either wire guidance, where wires are embedded in
the floor and sensed inductively, or inertial guidance with
magnets placed in the floor which act as landmarks to
reset the dead reckoning system for overcoming drift. For
contemporary AGV installations, the “gold standard” for
localization is arguably laser guidance. In this paradigm,
each AGV vehicle is fitted with a 2D scanning LIDAR
system. As the AGV navigates, the LIDAR tracks precisely
placed retro-reflector targets in the environment which serve
as landmarks. Retro-reflectors are used so that the target’s
reflectivity can be used as a filter for robust landmark
segmentation. Otherwise, attempting to segment targets in
a 3D world using a 2D sensor is extremely error prone.
In practice the approach works quite well, providing sub-
centimeter positioning accuracy.

A significant drawback of each of the aforementioned
approaches is that they require modifications to the ware-
house infrastructure. In the case of laser-guidance, hundreds
or even thousands of targets need to be accurately placed
within the environment. The large number is necessary to
ensure the required localization accuracy can be achieved
from any location in the facility, as industrial environments
are often very cluttered [8]. The result is not only significant
per-vehicle costs, but also very high installation costs. Fur-
thermore, the approach has limited flexibility in that changes
to a facility’s layout may necessitate significant modifications
to the reflector installation.

It should then come as no surprise that there is significant
interest in infrastructure-free solutions to AGV localization.



Indeed, in their roadmap for boosting the use of AGVs in
industrial applications, the authors in [8] specifically cite
localization based upon natural landmarks as a key enabling
technology. Both academic and industry researchers have
taken notice. Vision-based solutions have been proposed
in [9], [10], and most significantly by Seegrid Corporation
[6]. These approaches come with the pros (e.g., lower-cost,
passive sensors) and cons (e.g., limited robustness to illumi-
nation changes, inability to operate in darkness) associated
with vision sensors. More recently, researchers have begun
investigating the use of LIDAR systems to localize in large-
scale warehouse environments by leveraging maps generated
a priori [11], [12]. However, the authors’ use of a 2D
LIDAR for localization in a cluttered industrial environment
necessitated a contour-based approach. Of concern is that
palletized goods and materials may make up a significant
portion of the LIDAR scan (contour), and the robustness of
the approach to permutations in pallet placement and density
has only seen limited validation.

With these insights, we argue that:
1) Robust, infrastructure-free localization in a cluttered

industrial environment motivates 3D LIDAR systems
for perception

2) Feature based localization approaches are preferable,
as they are more stable and less dependent upon
variability in warehouse inventory, and

3) Using 3D LIDAR sensors, there are sufficient natural
3D features in warehouse environments that the use of
retro-reflector targets can be eliminated.

Unfortunately, the accessibility of such an approach has
been constrained due to the limited availability of suitable
sensing technology. However this is rapidly changing, and
AGV localization now appears ready for a paradigm shift.

Based on our previous work in landmark map-based local-
ization in large scale urban environments [13], we propose an
adaptation of the approach for large scale indoor warehouse
environments. In urban environments, we used ubiquitous
pole-like features, such as lamp posts, parking meters, and
decorative trees, as natural landmarks in our map. Similarly,
in warehouse environments, we propose using the pole-like
pallet rack supports as landmarks. In addition to the new
application area, the main extensions of this work include the
integration of the Velodyne VLP-16 LIDAR, a comparison of
alternate mapping paradigms, and methods used to segment
the pallet rack supports from 3D representations of the
warehouse environment.

II. RELATED WORK

Mapping and localization in static environments is a
mature area in robotics with a rich body of literature. As
such, we limit the scope of discussion to the state-of-the-art
in the specific context of warehouse environments.

In [14], the authors propose an infrastructure-free frame-
work for warehouse navigation that uses a topological map
rather than a globally consistent metric map. Their approach
is to use a monocular camera to track the texture on the floor
and the map is a locally consistent pose graph representation

where each pose in the graph has an associated image. Local-
ization is performed by matching the current camera frame
to a likely subset of the pose graph. Due to the differences in
map representation, our approach is not directly comparable.

More similar to our work in terms of map representation
is a body of research [11], [12], [15] under the PAN-Robots
project [16] funded by the European Union. In [12] the
authors use the GMapping algorithm [17] to build an 2D oc-
cupancy grid based map representation. We similarly use the
GMapping algorithm, but only as a means to build a globally
consistent 3D reconstruction of the environment. In [15], the
authors extend the work to include GraphSLAM [18] based
mapping approach where existing retro-reflectors were used
as landmarks. This is similar to our approach in that the
map representation is feature-based, however our landmarks
are based on natural 3D features of the environment, rather
than artificial 2D features. While a stated goal in [12] is to
enable 3D mapping, all the mapping and localization work
is 2D based. There is only a brief mention that 3D mapping
is possible and is left as future work.

In [12], [15] they use a contour-based, adaptive Monte
Carlo localization (AMCL) approach [18] where they use P-
L-ICP [19] for visual odometry. In contrast, our localization
approach focuses on naturally occurring warehouse features.
By leveraging th latest in 3D LIDAR systems for localization,
specifically the Velodyne VLP-16 LIDAR [20], robust, real-
time 3D feature segmentation and landmark association is
achieved. This 3D-to-3D feature mapping provides a sig-
nificant advantage over 2D contour approaches in terms
of system robustness. Furthermore, since the features we
are tracking are temporally invariant for a given warehouse
layout, we expect this approach will provide more stable and
consistent localization performance.

III. MAP GENERATION

The map representation used by the system is feature-
based. In this work, we chose to use the vertical, pole-
like supports of pallet racks as landmark features, which we
will refer to simply as pole features. The mapping process
consists of three main steps: (1) collect dense laser scans
of the environment, (2) register the laser data to a common
coordinate frame to create a 3D point cloud reconstruction
of the environment, and (3) segment salient 3D features from
the registered point cloud to create a landmark map.

A. The Mapping Trike Platform

To acquire dense laser scans of the environment, we
utilized our Mapping Trike platform [13]. Details of the
sensor suite are repeated here for convenience. Pose estima-
tion was provided by a Microstrain 3DM-GX3-45 inertial
measurement unit (IMU) in conjunction with two 4096
cycles per revolution (CPR) resolution encoders mounted
on the rear wheels. Two SICK LMS291-S14 LIDARs were
mounted facing each side for the purpose of creating the
3D reconstruction. A single SICK LMS291-S05 LIDAR was
mounted parallel to the ground plane facing the rear for the
purpose of global pose corrections.



Fig. 2. (Left) One aisle of the warehouse. (Center) A point cloud reconstruction. (Right) Landmark segmentation for feature map generation.

B. Coordinate Frame Registration

We note that although we are creating a 3D reconstruction
of the warehouse environment and tracking 3D features,
AGV localization will be on the plane. As a result, the
mapping goal is register the 2D positions of the landmarks to
a common global coordinate frame. There are many mature
solutions to the Simultaneous Localization and Mapping
(SLAM) problem for learning 2D maps. In this work, we
chose to use the GMapping algorithm [17]. The main reason
for this decision was convenience as a high quality open
source solution implementation is available [21]. However,
any SLAM algorithm capable of recovering the trike’s tra-
jectory could be a suitable replacement.

The GMapping algorithm is a particle filter based approach
to learn a 2D occupancy grid representation of the envi-
ronment from horizontal planar laser scans and odometry
measurements. Laser scans from the rear-facing LIDAR
were used as input. For the odometry measurements, an
extended Kalman filter (EKF) was used which incorporated
the vehicle kinematics in the predictive step and data from
the encoder and IMU for the corrective step. Since the floor
of a warehouse environment is roughly planar, we used a 3
degree of freedom motion model of the form:xy
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where x and y are Cartesian coordinates, θ is the yaw angle,
∆l and ∆a were the linear and angular displacements over
some small discrete time step denoted as k. Note that there
is an unmodeled kinematic constraint from the trike’s front
wheel, but this was not needed for mapping purposes.

The GMapping algorithm learns a 2D occupancy grid
representation of the environment. However, our goal is to
learn a 2D feature-based representation by creating a 3D
reconstruction of the environment, segmenting the landmarks
from this representation, and then registering the landmarks
to the 2D plane. We used a structure-from-motion based
approach to register the side-facing LIDAR scans to the
GMapping result, which only required logging the pose
corrections at each time step of the GMapping algorithm.

C. Landmark Segmentation

With the corrected trike poses, a globally consistent 3D
point cloud reconstruction of the environment could be

constructed as depicted in Fig. 2 (center). The goal was to
segment the pole features from this reconstruction. First each
2D laser scan was transformed to a coordinate frame where
the x axis was parallel to the ground plane, here denoted as
a sequence of consecutive points, S = (p1, . . . , pk), where
k is the number of points in a scan and each pi is a vector
of coordinates, [x, y]T .

Then each scan was clustered into subsets where the points
in a valid cluster satisfied three conditions:

1) ‖pi+1 − pi‖ < α, where α is the distance tolerance
between points,

2) ‖aT pi − f(S)‖ < β, where a = [0, 1]T , f(S) is the
median y value of the points in scan S and β is a
distance tolerance to f(S),

3) ‖pnc
− p1c‖ > γ, where p1c and pnc

are the first and
last points in cluster c respectively, and γ is a tolerance
on the length of a cluster.

The assumption was that a pallet rack support was the
tallest contiguous vertical object in a scan that contained
one. Hence, the first condition validates “contiguousness”,
the second condition validates “verticality”, since the median
value should lie on the pole feature, and the third condition
validates “tallness”. In this work, the α and β values were
both set to 2 cm, and γ was set to 30 cm. These values
were chosen based on the LIDAR’s anglular resolution and
mounted orientation.

The points from all valid clusters from all laser scans
were transformed to the 3D global coordinate frame based
on the corrected trike poses and combined into a set M .
The points in M were clustered into subsets that satisfied
the condition ‖pi − pj‖ < ε where ε is the maximal intra-
cluster distance between points. In this work, ε was set to
5 cm based on the trike driving approximately 1 m/s during
mapping. Any cluster that had a bounding box height greater
than 2 meters was considered to be a landmark. This value
was chosen based on the LIDAR’s field of view and the
expected minimum range to a landmark. A depiction of
accepted landmark clusters is shown in Fig. 2 (right). The 2D
landmark map was then synthesized by projecting centroids
of each accepted cluster to the ground plane.

IV. MAP-BASED LOCALIZATION

This section describes the proposed AGV localization
procedure, which assumes that a landmark map is available.
The main components of the system are perception and



localization. The perception component handles landmark
segmentation and the localization component maintains an
estimate of the AGV’s pose within the landmark map. A
description of each of these components and the development
platform now follows.

A. The Development Platform

Since an AGV was not initially available to us, to demon-
strate feasibility we employed our Smart Wheelchair (SWS)
platform as a surrogate [13]. The SWS was equipped with a
mast-mounted Velodyne VLP-16 for exteroceptive sensing.
The VLP-16 was chosen as it provides accurate, real-time
360◦ 3D measurements. It features 16 laser sensors with a
vertical field of view of 30◦. We also note that the VLP-
16 costs less (≈ $8000 USD) than single-beam LIDARs
currently used on AGV reflector-based localization systems.
The SWS also provided odometry information from wheel
encoders and IMU measurements.

B. Landmark Segmentation

We denote a 360◦ VLP-16 laser scan as a matrix of the
form:

P =

 p1,1 p1,2 . . . p1,k
...

... . . .
...

p16,1 p16,2 . . . p16,k

 ,

where k is the number of scans, pi,j is a 3D coordinate. Each
row corresponds to a laser scan and each column corresponds
to an azimuth angle.

The first step is to correct the measurements in P to com-
pensate for vehicular motion. We assume constant motion
between odometry measurements and a constant rotational
velocity of the sensor. For each column j in P , the corrected
translation is given by lerp(w0, w1, η) where lerp(·) is the
linear interpolation operation, w0 and w1 are the measured
vehicle position at the beginning and end of the scan re-
spectively, and η = (j − 1)/(k − 1) is the interpolation
parameter. Similarly, the corrected rotation for each column
j in P is given by slerp(q0, q1, η), where slerp(·) is the
spherical linear interpolation operation and q0 and q1 are
quaternion representations of the measured vehicle yaw at
the beginning and end of the scan respectively.

Next, the points in each column j in P are associated
to 2D polar coordinates, (ρi,j , φi,j), based on the x and y
components of each point, assuming that the x− y plane is
the ground. Then a set of valid points is created:

V = {pi,j | ‖ρ1,j − h(j)‖ < δ ∧ . . . ∧ ‖ρ16,j − h(j)‖ < δ},

where h(·) is the median ρ value in column j and δ is a
distance tolerance from this value. In this work, the value
of δ was set to 3 cm based on the accuracy of the VLP-16.
The assumption was that due to the limited vertical field of
view and a priori knowledge of the sensor position that all
16 scans at a given azimuth would hit a pole feature.

The points in V were then clustered into subsets that
satisfied the condition ‖πxy(pi) − πxy(pj)‖ < ξ where
πxu(p) is the x−y projection of point p and ξ is the maximal

intra-cluster distance between points. In this work, ξ was set
to 3 cm based on the accuracy of the VLP-16. Each cluster
was then validated based on the geometry of its oriented
bounding box. Clusters were rejected if: the height was less
than 1.2 meters, the max(width, depth) was greater than 0.5
meters, or the ratio of the height to the max(width, depth)
was less than 5. These values were chosen based on vertical
resolution of the VLP-16, the expected minimum distance to
detect a landmark, and the expected width of a landmark.
Fig. 3 depicts the resulting segmentation. The segmentation
operated in real-time with a VLP-16 scan rate of 5 Hz.

Fig. 3. Real-time landmark segmentation for localization using the
Velodyne VLP-16. Detected landmarks are highlighted in red.

C. Localization Procedure

Localization of the SWS was performed using the same
particle filter based approach described in our previous
work [13]. In short, we implemented a variant of the
feature-based FastSLAM 2.0 algorithm [22] that performed
localization, but no mapping. We found that due to the
improved proposal distribution, fewer particles were needed
to maintain localization. In this work, we used 20 particles
for our localization experiments. This compares favorably
to the AMCL approach in [12] which required hundreds of
particles for effective localizaion. For pose estimation the
mean over the particle set was used.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed method
in its intended environment, a map was constructed of an
approximately 20 × 35 meter section of warehouse shown
in Fig. 1. The following sections describe the mapping
results and the client localization results. We leveraged the
Robot Operating System (ROS) [23] framework for our
implementation and also utilized the Point Cloud Library
(PCL) [24] for processing point cloud data from the exteri-
oceptive sensors.

A. Mapping

To construct the map, data were collected by driving
the Mapping Trike through the warehouse at a rate of
approximately 1 m/s. In conjunction with the LMS291
LIDAR scan rate of 75 Hz, this gave us a vertical scan for
each 1-2 centimeters traveled which was sufficiently dense



Fig. 4. (Left) The localization accuracy experiment set up with the SWS equipped with a Velodyne VLP16. (Center) The actual vs. estimated path.
(Right) Absolute error vs. time. The mean absolute error was 1.9 cm.

for our landmark segmentation procedure. An advantage of
the Mapping Trike platform in this scenario was that the
maneuverability allowed us to collect data without disrupting
normal warehouse operations.

To validate the effectiveness of the landmark segmentation
of the Mapping Trike, the number of landmarks was counted
by hand as a ground truth measure. This value was compared
against the map generated by the mapping process. In total,
74 of 74 visible landmarks were successfully segmented.
Furthermore, no false positives were detected. From this, we
report that in our test environment the proposed mapping
approach had a 100% true positive rate for segmenting
landmarks, and a 0% false positive rate. While there were no
ground truth measurements of the true landmark coordinates
to determine a quantitative measure of accuracy, the gen-
erated map was qualitatively consistent to the environment
based on the spacing between landmarks and the ability of
the SWS to localize.

A second mapping experiment was performed to evaluate
the viability of mapping with the SWS platform. The moti-
vation for this was to investigate the potential for eliminating
the special purpose mapping vehicle. In other words, could
an AGV equipped with a VLP-16 LIDAR create its own
map? While the accuracy of the VLP-16 in conjunction with
the motion estimation error of the platform was initially
deemed unsuitable to create an accurate 3D reconstruction,
the SWS (our AGV surrogate) had the advantage of being
able to detect each landmark multiple times from different
poses. Thus, a given landmark position estimate could be
derived from multiple constraints.

To build the map, data were logged while driving several
loops through the warehouse (the same data set used in
Fig. 5), landmarks were segmented using the approach in
Section IV-B, and then a classic EKF SLAM formula-
tion [25] was used to learn the map. The SWS generated
map contained all the ground truth landmarks with no false
positives.

To quantitatively compare the maps a minimization of the
form:

argmin
R,t

f(R, t) =
1

N

N∑
i=1

‖xi −Ryi − t‖2,

where xi and yi are the corresponding points, N is the
number of points, R is a rotation matrix in SO(2), and t is a

translation vector, was solved to obtain the obtain the R and t
to align the points. After the points were aligned the distances
between corresponding points were computed and used as a
quantitative measure of map similarity. This resulted in a
mean distance of 4.3 cm with a standard deviation of 3.5
cm. Again, while we lack absolute ground truth, the relative
consistency of the two maps indicates the potential for an
AGV equipped with a Velodyne VLP-16 LIDAR to create
its own landmark map.

B. Localization Accuracy
In an attempt to quantify localization accuracy, we per-

formed an experiment where we marked a line down the
center of the middle aisle with blue tape, shown in Fig. 4
(left). The line served as “ground truth” and was measured
by hand relative to the landmark positions. The operator
then attempted to drive the SWS straight down the line, turn
in place at the end, and drive straight back to the starting
position. Results of localization are shown in Fig. 4. The
center figure depicts the path traveled and the right figure
depicts the absolute error to the target line over time. The
average path error was 1.9 cm with a standard deviation
of 1.1 cm and a median error of 2.3 cm. While this is in
excess of our target centimeter-level accuracy, we note that
the analysis assumes that the line was perfectly straight (it
was not) and the SWS operator drove down the center of
the line (he did not). This is evidenced in Fig. 4 (right),
where there is a noticeable symmetry about the 30 second
mark when the turn in place maneuver was performed. This
is likely due to a bias error in the placement of the tape
line. As a result, centimeter-level localization accuracy may
have been achieved. We acknowledge that this was a limited
test, but argue that it demonstrates the potential of our
approach to achieve the necessary localization accuracy for
an infrastructure-free warehouse environment.

To investigate the ability to maintain localization over
time, a second experiment was performed where the SWS
was driven around several arbitrary loops in the map at an
average speed of 1.0 m/s for approximately six minutes. The
estimated path is shown in Fig. 5. The starting pose was
approximately [-19 -9 0]T , and the total distance traveled
was 353 meters. There were an average 9.5 landmark ob-
servations per meter traveled. Every visible landmark was
detected, and there were no false positive (a feature being in-
correctly associated with a landmark) as accurate localization



Fig. 5. The estimated real-time corrected path where the SWS was driven
around several arbitrary loops within the warehouse map.

was maintained throughout the trial. A video showing the 3D
reconstruction and landmark segmentation for part of this
experiment can be viewed at https://www.youtube.
com/watch?v=B73tgGoT6Ms&feature=youtu.be.

VI. CONCLUSIONS & FUTURE WORK

In this work, we presented a 3D map-based approach to
infrastructure-free localization of an AGV in a warehouse
environment. Preliminary results support our hypothesis that
there are sufficient natural 3D landmarks to support a ro-
bust, feature-based localization approach. During warehouse
mapping, visible pole features were segmented with 100%
reliability, and with a 0% false positive rate. During localiza-
tion trials, all visible landmarks were detected, and again no
false positive landmarks were identified. The demonstrated
accuracy of the localization system was approximately 2cm.

This research was inspired in part by our work in outdoor
localization and mapping [13]. One significant improvement
that we observed herein was the potential for eliminating the
special purpose mapping vehicle. Compared to the actuated
Hokuyo UTM-30LX used in our previous work, the VLP-16
has over 3X the range, 2X the number of effective beams,
up to 2.5X the angular resolution, and greater fields-of-view.
Our experimental results indicate that these improvements
are sufficient to enable mapping with the AGV platform
itself, which dramatically simplifies the logistics for a real-
world implementation.

We are currently working with an AGV company to
benchmark our approach against a traditional LIDAR/retro-
reflector localization system in a representative warehouse
environment.
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